
Peak Load Pricing 
 
How should capacity be priced? 
 

• Pipelines 
• Airlines 
• Telephone networks 
• Construction 
• Electricity 
• Highways 
• Internet 

 
Pioneered by Marcel Boiteaux 
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Social welfare is 
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The Ramsey problem is to maximize W subject to a profit condition.  As always, write 
the lagrangian  L = W + l p. 
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Or, 
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where 

21
1 qq ≥ is the characteristic function of the event q1≥q2. 
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Similarly, 
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Note as before that lÆ• yields the monopoly solution. 
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There are two potential types of solution.   
 
Let the demand for good 1 exceed the demand for good 2.   
 
Then either q1>q2, or the two are equal. 
 
Case 1: q1>q2. 
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In case 1, with all of the capacity charge allocated to good 1, quantity for good 1 still 
exceeds quantity for good 2.   
 
Thus, the peak period for good 1 is an extreme peak.  
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Case 2: q1=q2. 
 
The first order conditions become inequalities, of the form  
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These must solve at q1= q0=q.  The profit equation can be written 
 
p1(q) - mc + p2(q) – mc = b 
 
This equation shows that the capacity charge is shared across the two markets 
proportional to the inverse demand.   
 
Not shared according to elasticities! 
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Priority Pricing 
 
Consider a case of a continuum of consumers, each of whom desires one unit.   
 
Rank the consumers by their valuations for the good, so that the qth consumer has a value 
p(q) for the good, and p is downward sloping. 
 
The quantity available is a random variable with distribution F.   
 
Priority pricing is a charge schedule c which provides a unit to a customer paying c(q) 
whenever realized supply is q or greater. 
 
A customer of type q should choose to pay c(q) for the qth spot in the priority list.  This 
leads to the incentive constraint: 
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It is a straightforward exercise to demonstrate that the first order condition is sufficient; 
see handout #2.   
 
Let F(H)=1, so that u(H)=0.  Then 
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Revenues to the firm from the priority pricing are 
 

.)()()()())(1)((
000
∫∫ ∫∫ ==−=
HH H

q

H

dqqfqqpdqdssfspdqqFqcR  



 8

This is the revenue associated with a competitive supply; 
 
A monopolist might have an incentive to withhold capacity to boost prices.  
 
How does a monopolist do so?  Withholding of capacity has the property of changing the 
distribution of available supply, in a first order stochastic dominant manner.  In 
particular, the monopolist can offer any distribution of capacity G, provided G≥F.  What 
is the monopolist’s solution?  Rewrite R to obtain 
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Provided marginal revenue MR is single-peaked,  
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That is, the monopolist cuts off the capacity at the monopoly supply. 
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Matching Problems 
 
Consider first the linear demand case with a uniform distribution of outages.  Perfect 
matching gets a payoff 
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No matching – that is a random assignment – produces an expected value of ¼, a fact that 
is evident from 
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Now consider two groups of equal size.   
 
The high value group has an average value of ¾, and is served with probability 
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The low value group has average value ¼ and is served with probability 1/4.  
Thus, the expected value from two categories is 
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Note that 5/16 is 75% of the way from ¼ to 1/3!  That is, a single group captures 75% of 
net value of a continuum of types! 
 
I show elsewhere that, provided a common hazard rate assumption is satisfied, two 
groups of equal size generally captures 50% or more of the possible gains over no 
priority pricing. 
 
Wilson shows that the losses from finite classes are on the order of 1/n2. 


