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Procurement Auctions with Best and Final Offers
Anonymous Author(s)

Abstract
We study sequential procurement auctions where the sellers are

provided with a “best and final offer” (BAFO) strategy. This strategy

allows each seller 𝑖 to effectively “freeze” their pricewhile remaining

active in the auction, and it signals to the buyer, as well as all other

sellers, that seller 𝑖 would reject any price lower than that. This is

in contrast to prior work, e.g., on descending auctions, where the

options provided to each seller are to either accept a price reduction

or reject it and drop out. As a result, the auctions that we consider

induce different extensive form games and our goal is to study the

subgame perfect equilibria of these games. We focus on settings

involving multiple sellers who have full information regarding each

other’s cost (i.e., the minimum price that they can accept) and a

single buyer (the auctioneer) who has no information regarding

these costs. Our main result shows that the auctions enhanced

with the BAFO strategy can guarantee efficiency in every subgame

perfect equilibrium, even if the buyer’s valuation function is an

arbitrarymonotone function. This is in contrast to prior workwhich

required that the buyer’s valuation satisfies restrictive properties,

like gross substitutes, to achieve efficiency. We then also analyze

the seller’s cost in these subgame perfect equilibria and we show

that it can vary significantly across different efficient outcomes,

depending on the structure of the buyer’s valuation function.
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1 Introduction
Many situations call for purchasing items that need to fit together. A

computer drive must fit in the drive bay, an alternator in the engine

bay, and a piece of accounting software may need to be compatible

with inputs from a web store. Indeed, a company setting up a web

store needs a variety of software products that work together: a

front end for the buyer, an accounting system, an inventory sys-

tem, a process for product delivery, customer service software, and

so on. The creator of a web store will want to purchase various

applications that are compatible and, as a result, two accounting

systems may be good substitutes, but an accounting system will be

a complement to an inventory system. That is, an array of software

applications will contain both substitutes and complements, in a

potentially very complex relationship.
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Procurement problems featuring both substitutes and comple-

ments are probably more common than just substitutes. Virtually

any assembly problem will force complements via specifications

and compatibility. While individual components are substitutes

for each other, components that fit together are necessarily com-

plementary. This logic applies equally well to software as well as

hardware. Similarly, information – for advertising, for financial

transactions, for investment, or for training models – from various

sources will have both complements and substitutes among the

various suppliers. How should a buyer purchase in such a situation?

The default solution for pricing an asset when there is substantial

uncertainty about its value is to hold an auction, and this approach

has been successful for a variety of such assets, ranging from elec-

tromagnetic spectrum licenses to antiques and art. We approach

this problem from the buyer’s perspective, aiming to design pro-

curement (or reverse) auctions that they can use to determine which

subset of these goods or services they should acquire, and at what

price. One difficulty in applying standard procurement auction

tools to the applications discussed above is that known techniques

from the literature focus on the case where the goods being sold

are substitutable, e.g., captured by the assumption that the buyer’s

valuation function is submodular, or satisfies the more restrictive

gross substitutes property. For example, the brilliant paper of Kelso

and Crawford [13], extended by Gul and Stachetti [11], shows that

whenever the gross substitutes property is satisfied the auctions

perform well. Moreover, there are examples that illustrate bad equi-

libria can arise whenever the gross substitutes property is violated,

suggesting that this property may even be necessary.

Our main contribution in this paper is to design auctions that

can handle the more complicated value structure that arises in

many important applications. We revisit the design of procurement

auctions and augment the bidder with a new strategy which we

call “best and final offer” (BAFO). This strategy, which is often

used in practice but has not received enough attention in auction

theory, effectively allows the bidders to freeze their price, while

remaining active. In doing so, they risk losing the auction but, as

we show, if they strategically choose when to use it, the design

recovers the efficiency even in settings with highly complicated

valuation functions that exhibit both substitutes and complements.

1.1 Our Results
We focus on settings involving a single buyer who wants to acquire

the goods or services of multiple sellers. For that setting we revisit

the design of procurement auctions and augment the bidder with

a new strategy which we call “best and final offer” (BAFO). This

strategy, which is often used in practice but has not received enough

attention in auction theory, effectively allows the bidders to freeze

their price, while remaining active. In doing so, they risk losing the

auction but, as we show, if they strategically choose when to use

it, the design recovers the efficiency even in settings with highly

complicated valuation functions that exhibit both substitutes and

complements.
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In the first class of auctions, which we refer to as “Name-Your-

BAFO” auctions, the sellers are approached in some sequence and

each seller 𝑖 is asked to directly report their BAFO, i.e., the payment

that they request for selling (essentially posting a take-it-or-leave-it

price), after observing the prices posted by all sellers that were ap-

proached before 𝑖 in the sequence. Once all sellers have posted their

prices, the buyer purchases from the set of sellers that maximizes

their utility, i.e., the set that maximizes the buyer’s value for the

set minus the sum of the prices posted by the sellers in that set.

The second class of auctions are descending auctions and may

interact multiple times with each seller, providing them with a

strategy space that is quite different. These auctions initially assign

a high price to each seller and then take place over a sequence of

rounds: in each round the auction computes a tentative allocation

based on the current prices and approaches one of the sellers that

remain active and is not in the tentative allocation and asks them if

they would be willing to accept a slightly reduced price. The seller

can either accept that reduction and remain active, or to instead

permanently “freeze” their price. Crucially, a seller that freezes

their price does not drop out of the auction, so freezing their price

corresponds to a BAFO strategy. Once every seller is either frozen

or in the tentative allocation, the buyer purchases from the set of

sellers that maximizes their utility, given the current prices.

Analysis of auction efficiency and cost. We analyze the extensive

form games that these sequential auctions give rise to when the

sellers know the buyer’s valuation function and the sellers’ costs

(i.e., the bare minimum payment that they need to receive), but

the buyer has no prior information regarding the sellers’ costs.

Specifically we evaluate the subgame perfect equilibria (SPE) of

these games in terms of their efficiency and their cost.

We first show that every one of these auctions is guaranteed to

reach efficient outcomes in every subgame perfect equilibrium. This

result holds for a very general class of buyer valuation functions

that can exhibit complementarities, which is in stark contrast to

classic prior work that seems to suggest that the restrictive gross

substitutes property is required to reach efficiency. The key differ-

ences that allow us to achieve this positive result are i) the fact

that our auctions provide the sellers with the ability to make a

BAFO, combined with ii) their sequential implementation, which

allows the sellers to signal to each other using the BAFO strategy.

Specifically, once some seller 𝑖 has finlized their price using the

BAFO strategy, all other active sellers can observe this fact and

have to choose their optimal strategy conditioned on this fact. This

is something that 𝑖 anticipates when choosing the BAFO strategy,

and this signaling between the sellers avoids inefficient outcomes.

Finally, apart from the allocations returned by these auctions

we also analyze the price vectors that they give rise to. We show

that although the allocation remains efficient irrespective of the

sequence in which the sellers are approached, this sequence can

have a very big impact on the total cost that the buyer needs to pay,

i.e., the sum of the prices in the efficient solution.

1.2 Related Work
Our work adds a new twist to the large body of literature on as-

cending and descending price auctions, which have a long history

in economic theory (e.g., Kelso and Crawford [13], Demange, Gale

and Sotomayor [9]; Gul and Stacchetti [11]; Parkes and Ungar [17];

Ausubel and Milgrom [4]; Bikhchandani and Ostroy [6], Ausubel

[1, 2]; Perry and Reny [18]; de Vries, Schummer, and Vohra [8]).

Such designs have been immensely successful both in theory and

in practice and variants of these designs have been used in ma-

jor spectrum auctions worldwide [3, 16] as well as in auctions

for electricity, gas, and emission allowances in Europe [7], among

many other applications. There are several practical advantages to

this auction format such as minimizing the information the buyer

learns about the sellers and the simplicity in bidding (see [18] for a

comprehensive discussion).

Prior work has focused on settings in which there is a degree

of substitution between the items involved: [11, 13] focus on gross

substitutes, [9] on unit-demands which is a special case of substi-

tutes, [1] on homogenous goods with decreasing marginals, [8]

assumes a submodularity condition. The only examples that we are

aware of with ascending and descending price procedures that can

handle complements are: Sun and Yang [20] and Baranov et al [5]

who do so by studying restriced forms of complementarity with an

underlying substitutable structure. This is a structure that Hatfield

and Kominers refer to as “hidden substitutes” [12]. In fact, some of

these auctions are known to lose efficiency even in seemingly very

simple settings beyond substitutes [10].

Just like the descending auctions that we analyze in this paper,

the descending clock auctions in the papers cited above also assign

a personalized price to each seller, which then weakly decreases

over time. However, a crucial difference is that clock auctions do

not provide the bidders with the option of freezing their price. If a

seller is not willing to accept a price decrease, then they are forced

to drop out of the auction and are, therefore, excluded from the

final solution, even if their price before dropping out turns out to

be competitive in hindsight.

Our results augment the descending auction format with the

ability for participants to make a BAFO – instead of dropping out of

the auction, sellers can remain active but can no longer revise their

price. This new feature allows us to extend the efficiency guarantees

to any combinatorial valuation. The notion of a BAFO has been used

in the implementation of optimal strategies in certain bargaining

games (e.g. Samuelson [19]) but to the best of our knowledge has

not been applied to iterative combinatorial auctions.

Another important difference between our work and the pre-

vious literature on iterative auctions is the equilibrium concept.

Traditional descending price auctions satisfy the stronger notion

of strategyproofness. Instead we guarantee efficiency under any

subgame perfect equilibrium (SPE) of the extensive form game in-

duced by the auction mechanism. Characterizing SPE of tends to be

difficult except for very structured games [14]. The SPE of simple

auction formats has been studied under submodularity and matroid

conditions [15].

2 Preliminaries
We consider settings with a single buyer who wants to procure

goods or services from a set 𝑁 = {1, . . . , 𝑛} of 𝑛 sellers. Each seller

𝑖 ∈ 𝑁 has a cost 𝑐𝑖 ∈ N for selling
1
and the buyer’s value for buying

1
Throughout the paper, we assume that costs and prices are expressed as multiples of

some small enough denomination, e.g., $1 or ¢1.

2
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each subset of goods or services is captured by a combinatorial

valuation function 𝑣 (·) : 2𝑁 → R. Given a vector of prices 𝑝 ∈ R𝑛 ,
one for each seller, the utility of the buyer for a subset of sellers

𝑄 is equal to his value for that subset, minus the total cost, i.e.,

𝑣 (𝑄) − ∑
𝑖∈𝑄 𝑝𝑖 . We use 𝐷 (𝑣 ;𝑝) to denote the buyer’s preferred

subset of sellers, i.e., the one that maximizes the buyer’s utility:

𝐷 (𝑣 ;𝑝) := argmax𝑄⊆𝑁 [𝑣 (𝑄) −
∑
𝑖∈𝑄 𝑝𝑖 ] .

Types of valuation functions. A valuation function 𝑣 (·) : 2𝑁 →
R is anonymous if for every 𝑄 ⊆ 𝑁 , the value of 𝑣 (𝑄) depends
only on the size |𝑄 | of this set, irrespective of the sellers in it. A

valuation function is submodular if for any two sets 𝑄 and 𝑅 such

that 𝑄 ⊂ 𝑅 ⊂ 𝑁 , and any 𝑖 ∉ 𝑄 ∪ 𝑅, we have 𝑣 (𝑄 ∪ {𝑖}) − 𝑣 (𝑄) ≥
𝑣 (𝑅 ∪ {𝑖}) − 𝑣 (𝑅). A buyer’s valuation function satisfies the gross
substitutes property if an increase of the price for certain goods

does not reduce the buyer’s demand for goods whose price did not

increase. Formally, a valuation function satisfies gross substitutes if
for every pair of price vectors 𝑝 ≤ 𝑝′, if𝑄 ∈ 𝐷 (𝑣 ;𝑝) at prices 𝑝 , then
there exists 𝑅 ∈ 𝐷 (𝑣 ;𝑝′) at prices 𝑝′ such that𝑄∩{𝑖 : 𝑝𝑖 = 𝑝′

𝑖
} ⊆ 𝑅.

Procurement auctions. Our goal is to design procurement auc-

tions, which are mechanisms that interact with the sellers and

decide which subset𝑊 ⊆ 𝑁 of sellers the buyer will purchase

(the “winners”), and what price each winner 𝑖 ∈ 𝑊 should pay.

The output of the auction is the set𝑊 (or, equivalently, a vector

𝑥 ∈ {0, 1}𝑛 , such that 𝑥𝑖 = 1 if 𝑖 ∈ 𝑊 and 𝑥𝑖 = 0 if 𝑖 ∉ 𝑊 ) and a

price 𝑝𝑖 for each 𝑖 ∈𝑊 . The utility of each seller 𝑖 ∈ 𝑁 is

𝑢𝑖 (𝑥, 𝑝) = (𝑝𝑖 − 𝑐𝑖 )𝑥𝑖 .

If 𝑝𝑖 = 𝑐𝑖 we assume that agents prefer winning at a price equal to

their cost to losing (both yield the same utility of zero).

Given a set of winners 𝑊 and a price vector 𝑝 , the (utilitar-

ian) social welfare is equal to 𝑣 (𝑊 ) − ∑
𝑖∈𝑊 𝑐𝑖 . We use 𝑊 ∗ ∈

argmax𝑊 ⊆𝑁 𝑣 (𝑊 ) −∑𝑖∈𝑊 𝑐𝑖 to denote an efficient solution, i.e., a
set of winners𝑊 that maximizes the social welfare, and we use 𝑥∗

to denote the corresponding allocation vector. The total cost of the

buyer given a price vector 𝑝 and a set of winners𝑊 is

∑
𝑖∈𝑊 𝑝𝑖 .

Winner selection and tie-breaking. Once the price vector 𝑝 has

been finalized, our proposed auctions choose a set of winners𝑊

from the demand set 𝐷 (𝑣 ; 𝑝). If there are multiple such sets in

𝐷 (𝑣 ; 𝑝), we use a tie breaking rule which is encoded as a winner

selection rule which maps a vector of prices 𝑝 to a set of win-

ners 𝑊 (𝑝) ∈ 𝐷 (𝑣 ;𝑝) in the demand set and satisfies the well-

known Independence of Irrelevant Alternatives (IIA) property. In

our context, this implies that if 𝑊 ∗ is the winning set that we

choose from 𝐷 (𝑣 ; 𝑝) and, 𝐷 (𝑣, 𝑝′) is another demand set such that

𝐷 (𝑣, 𝑝′) ⊆ 𝐷 (𝑣, 𝑝) and𝑊 ∗ ∈ 𝐷 (𝑣, 𝑝′), then we choose𝑊 ∗ from
𝐷 (𝑣, 𝑝′) as well. Most natural ways of breaking ties satisfy IIA. E.g.,

the rule that defines some arbitrary total order over subsets 𝑄 ⊆ 𝑁

and then chooses the first 𝑄 ∈ 𝐷 (𝑣 ;𝑝) according to this total order.

Extensive form games and subgame perfect equilibrium. Our auc-
tions are sequential and give rise to extensive form games between

the sellers. An extensive form game with a set 𝑁 of players is rep-

resented by a rooted tree T of finite depth with node set S. Given
a node 𝑠 ∈ S, we use T (𝑠) ⊆ S to denote the child-nodes of 𝑠 in

T . If T (𝑠) = ∅, we say that 𝑠 is a terminal node; otherwise, we say

it is an internal node. We use Sterm to denote the set of terminal

nodes and Sint = S \ Sterm to denote the set of internal nodes.

Each internal node 𝑠 is associated with a player 𝑖 (𝑠) (the player
whose turn it is to make a “move” at that point in the game) using

a mapping 𝑖 : Sint → 𝑁 . If we let S𝑖 ⊆ Sint be the set of internal
nodes associated with player 𝑖 , then a strategy for player 𝑖 is a

mapping 𝑎𝑖 : S𝑖 → S such that 𝑎𝑖 (𝑠) ∈ T (𝑠). Each terminal node

is associated with a payoff 𝜋𝑖 : Sterm → R for each player 𝑖 ∈ 𝑁 . A

profile of strategies (𝑎1, . . . , 𝑎𝑛) for all players extends the payoff
functions from the terminal nodes to every internal node 𝑠 ∈ S via

backward induction as follows:

𝜋 𝑗 (𝑠) = 𝜋 𝑗 (𝑠) for 𝑠 ∈ Sterm and 𝜋 𝑗 (𝑠) = 𝜋 𝑗 (𝑎𝑖 (𝑠 ) (𝑠)) for 𝑠 ∈ Sint .

A profile of strategies is a subgame perfect equilibrium (SPE) if

for every player 𝑖 , all nodes 𝑠 ∈ S𝑖 and all nodes 𝑠′ ∈ T (𝑠) we have:

𝜋𝑖 (𝑎𝑖 (𝑠)) ≥ 𝜋𝑖 (𝑠′).

3 Sequential Name-Your-BAFO auction
As a warm up, we first propose and analyze the Name-Your-BAFO,
which is a simpler auction that asks each seller once what their best-

and-final-offer is. This auction is simpler to implement and analyze

than the descending auction analyzed in Section 4, but lacks the

“price discovery” aspect of descending auctions that makes them

attractive in practice. These differences notwithstanding, our results

show that both of these auctions always yield efficient outcomes.

The Name-Your-BAFO auction approaches the sellers in a pre-

specified (and possibly history-dependent) order and sequentially

asks each seller 𝑖 ∈ 𝑁 to submit a bid 𝑏𝑖 ∈ N regarding the price

that they would like to be paid for their good or service. This is

the only price reported by the seller, so they directly report their

BAFO. Before reporting their BAFO, each seller can observe the

bids reported by all preceding sellers. The buyer then chooses a

set of winners𝑊 that maximizes their own utility 𝑣 (𝑊 ) −∑𝑖∈𝑊 𝑏𝑖
(using a tie-breaking rule that satisfies IIA) and pays each winner

𝑖 ∈𝑊 a price equal to their bid, i.e., 𝑝𝑖 = 𝑏𝑖 .

The auction described above gives rise to an extensive form

game that can be represented by a tree of depth 𝑛 + 1, where each
node at level ℓ + 1 is indexed by a tuple (𝑏1, . . . , 𝑏ℓ ) ∈ Nℓ . Note
that the tree has infinite branching but finite depth. The payoffs

of the sellers can be computed at the terminal nodes once all the

bids (𝑏1, . . . , 𝑏𝑛) have been specified. In this section we only refer

to this tree implicitly. In the more difficult proofs in the following

session, we explicitly analyze the corresponding game tree.

Before analyzing this auction, we consider the toy example of

buying chopsticks in auction to develop some intuition regarding

the important role of the sequential nature of our auctions.

3.1 Buying Chopsticks in Auction
To exhibit the issues that arise with complementarities and how

sequential pricing can sidestep these issues, we consider the illus-

trative example of buying chopsticks using an auction. Consider

an instance of a chopstick auction with one seller with a fork and

two sellers with one chopstick each. The value of the buyer for a

fork is the same as the value for two chopsticks, say $1; a single

chopstick is worthless. This situation fails the gross substitutes

property because the chopsticks are complements (raising the price

3
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of one chopstick will eventually lower the demand for the other

chopstick). Assume that the chopstick sellers have a cost of ¢10 each,

and the fork seller has a cost of ¢50, and consider a non-sequential

version of the Name-Your-BAFO auction. In this auction, there is

an equilibrium where the chopstick sellers each ask for ¢95 and the

buyer buys the fork for $1. No seller can improve their position by

a unilateral deviation; a chopstick seller cannot create a sale even

if they were to lower their price to equal their cost.

Note, however, that the inefficient equilibrium falls apart if the

prices are set sequentially and the sellers can observe these prices.

For example, suppose that the auction approaches the sellers in a

sequence and the fork seller goes last. If the sum of the chopstick

prices exceeds the fork seller’s cost, the fork will ask for the sum of

the chopstick prices, perhaps minus a penny if the indifferent buyer

randomizes (or $1 if the sum of the chopstick prices also exceeds

the buyer’s value). Knowing this, the second chopstick seller will

ensure that the sum of the prices does not exceed the fork’s cost, if

that is possible (i.e., if the price asked by the first seller is not more

than ¢40). Knowing this, the first chopstick asks for exactly ¢40, the

second seller asks for ¢10, and the fork seller asks for ¢50. The other

cases, where the fork seller is not last, are similar but the fork does

not necessarily ask for a price equal cost. In all permutations, the

buyer purchases chopsticks, which is the efficient outcome, though

the payment may exceed ¢50.

Remark 3.1. As exhibited by the chopstick auction example, in
the subgame perfect equilibria of the Name-Your-BAFO auction the
sellers’ bids are not necessarily equal to their costs.

3.2 Analysis of Name-Your-BAFO Auctions
Our main result for this section shows that every subgame perfect

equilibrium of a Name-Your-BAFO auction is efficient.

Theorem 3.2. For any combinatorial valuation 𝑣 , the allocation
induced by any subgame perfect equilibrium of a Name-Your-BAFO
auction is efficient.

Before proving this theorem, we show the following lemma.

Specifically, since all auctions in this paper choose an allocation

that maximizes the buyer’s utility (using a tie-breaking rule that

satisfies IIA), the outcome always satisfies the following property.

Lemma 3.3. If for some prices 𝑝 our auction chooses the winning
set𝑊 (𝑝), and 𝑝′ are any prices such that 𝑝′

𝑖
≤ 𝑝𝑖 for 𝑖 ∈𝑊 (𝑝) (the

prices of all the winning bidders are weakly lower) and 𝑝′
𝑖
≥ 𝑝𝑖 for

𝑖 ∉𝑊 (𝑝) (the prices of all the losing bidders are weakly higher), then
our auction chooses the same winning set at 𝑝′, i.e.,𝑊 (𝑝′) =𝑊 (𝑝).

Proof. Let𝑊 ∗ =𝑊 (𝑝) be the set of winners at prices 𝑝 and let

𝑇 ≠𝑊 ∗ be any other set of sellers. Since𝑊 ∗ ∈ 𝐷 (𝑣 ;𝑝), we have

𝑣 (𝑊 ∗) −
∑︁
𝑖∈𝑊 ∗

𝑝𝑖 ≥ 𝑣 (𝑇 ) −
∑︁
𝑖∈𝑇

𝑝𝑖 . (1)

Under prices 𝑝′, the cost of𝑊 ∗ decreases by Δ =
∑
𝑖∈𝑊 ∗ 𝑝𝑖 −𝑝′𝑖 and

the cost of every other set𝑇 decreases
2
by at most

∑
𝑖∈𝑇∩𝑊 ∗ 𝑝𝑖 −𝑝′𝑖 ,

2
In fact, it may even increase.

which is at most Δ, i.e.,
∑
𝑖∈𝑇 𝑝′

𝑖
≥ ∑

𝑖∈𝑇 𝑝𝑖 − Δ. As a result, we get:

𝑣 (𝑊 ∗) −
∑︁
𝑖∈𝑊 ∗

𝑝′𝑖 = 𝑣 (𝑊 ∗) + Δ −
∑︁
𝑖∈𝑊 ∗

𝑝𝑖

≥ 𝑣 (𝑇 ) + Δ −
∑︁
𝑖∈𝑇

𝑝𝑖

≥ 𝑣 (𝑇 ) −
∑︁
𝑖∈𝑇

𝑝′𝑖 ,

where the first inequality is due to (1) and the second inequality is

due to the fact that the prices in 𝑇 drop by at most Δ. Therefore,
𝑊 ∗ is also in 𝐷 (𝑣 ;𝑝′) (the demand set based on the new prices 𝑝′)
and 𝐷 (𝑣 ;𝑝′) ⊆ 𝐷 (𝑣 ;𝑝) (the demand set based on 𝑝′ contains only
the sets of sellers that were in 𝐷 (𝑣 ;𝑝) and whose price dropped

by exactly Δ). Using the fact that our auctions use a tie-breaking

rule that satisfies the IIA property, this implies that since𝑊 ∗ was
selected from 𝐷 (𝑣 ; 𝑝), it will also be selected from 𝐷 (𝑣 ;𝑝′). □

We now use this lemma to analyze the subgame perfect equilibria

of the game induced by Name-Your-BAFO, which can be computed

using backwards induction. First, we focus on the bid of the last

seller given the prices posted by the 𝑛 − 1 bidders preceding it, then
we focus on the bid of the next-to-last seller, and so on.

For the last seller, choosing their optimal BAFO is relatively

straightforward, since all the other bidders’ prices are already fi-

nalized. The bidder chooses their bid 𝑏𝑛 aiming to maximize their

utility (𝑏𝑛 − 𝑐𝑛)𝑥𝑛 , where 𝑥𝑛 = 1 if the last bidder is in the winning

set and 𝑥𝑛 = 0 otherwise. Note that, according to the definition

of the auction, if the bidder wins, the price that they are paid is

𝑝𝑛 = 𝑏𝑛 , but the winning set𝑊 (𝑝) chosen based on the final prices

and, hence, also the value of𝑏𝑛 that maximizes their utility, depends

on the previously posted prices (𝑝1, ..., 𝑝𝑛−1).
To simplify our analysis for sellers that arrive earlier in the

ordering, we now define a “conditional price vector” for each round

of the Name-Your-BAFO auction.

Definition 3.1. For each round 𝑘 ∈ {0, 1, . . . , 𝑛} of the Name-
Your-BAFO auction, the conditional price vector is defined as:

𝑝𝑖 (𝑘) =
{
𝑏𝑖 , if 𝑖 ≤ 𝑘

𝑐𝑖 , otherwise.

The final price vector after the completion of the auction is 𝑝 = 𝑝𝑛 .

Now, using this price vector, we define a notion of “conditional

efficiency.” The auction directly associates a winning set𝑊 (𝑠) with
each terminal node 𝑠 of the game tree (the set of winners if that

is indeed the outcome of the auction). Given a subgame perfect

equilibrium, this allocation can also be extended to every internal

node 𝑠 , using the subgame perfect equilibrium outcome of the

subgame rooted at 𝑠 (i.e.,𝑊 (𝑠) is the set of winners in the subgame

perfect equilibrium outcome of the subtree rooted at 𝑠).

Definition 3.2. Consider a node 𝑠 at the 𝑘-th level of the Name-
Your-BAFO game tree, after the first 𝑘 − 1 sellers have named their
best and final offers 𝑏1, . . . , 𝑏𝑘−1. We say that the set𝑊 (𝑠) associated
with 𝑠 is conditionally efficient if it maximizes the buyer’s utility with
respect to the price vector 𝑝 (𝑘 − 1), i.e.,

𝑊 (𝑠) ∈ argmax

𝑋
𝑣 (𝑋 ) −

∑︁
𝑖∈𝑋

𝑝𝑖 (𝑘 − 1).

4
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If there are multiple such allocations,𝑊 (𝑠) is the one chosen by the
same tie-breaking rule used by the auction to determine the winners.

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. We prove that in any subgame perfect

equilibrium, the set𝑊 (𝑠) associated with each node 𝑠 of the Name-

Your-BAFO game tree is conditionally efficient. We start at level

𝑘 = 𝑛 and proceed by backwards induction. This implies that the

auction is also conditionally efficient at 𝑘 = 1, for which 𝑝𝑖 = 𝑐𝑖 for

all 𝑖 ∈ 𝑁 , so the Name-Your-BAFO auction is efficient in every SPE.

The rest of the proof verifies the conditional efficiency for all 𝑘 .

Base case (𝑘 = 𝑛): Given any node 𝑠 at level 𝑘 = 𝑛 of the game

tree, we consider two possibilities based on whether or not there

is a bid 𝑏𝑛 ≥ 𝑐𝑛 that bidder 𝑛 can make to become a winner given

the previously posted bids (𝑏1, . . . , 𝑏𝑛−1). If no such bid exists, then

bidder 𝑛 is not in𝑊 (𝑠) (i.e., they are not one of the winners in the

SPE outcome of the subgame rooted at 𝑠) because for this bidder

to become a winner they would have to report a bid 𝑏𝑛 < 𝑐𝑛 that

would return negative utility 𝑏𝑛 − 𝑐𝑛 . For every other bidder and,

hence, also for every 𝑖 ∈ 𝑊 (𝑠), we have that their conditional

price is the same as their final price, i.e., 𝑝𝑖 (𝑛 − 1) = 𝑝𝑖 , and thus

𝑊 (𝑠) is conditionally efficient. If, on the other hand, there exists

some bid 𝑏𝑛 ≥ 𝑐𝑛 that would make bidder 𝑛 a winner, then the

bidder’s optimal strategy is to report such a bid in order to be one

of the winners (in fact, the bidder’s optimal strategy is to report

the largest 𝑏𝑛 for which they remain a winner). This means that

that bidder 𝑛 will be a winner in the SPE of the subgame rooted at

𝑠 , so this bidder is in𝑊 (𝑠). Furthermore, this implies that𝑊 (𝑠) is
conditionally efficient in this case as well: since i)𝑊 (𝑠) maximizes

the buyer’s utility with respect to the final prices 𝑝 and ii) the prices

𝑝 (𝑛−1) satisfy 𝑝𝑖 (𝑛−1) ≤ 𝑝𝑖 for all 𝑖 ∈𝑊 (𝑠) and 𝑝𝑖 (𝑛−1) = 𝑝𝑖 for

all 𝑖 ∉𝑊 (𝑠), we can use Lemma 3.3 to conclude that𝑊 (𝑠) would
also maximize the buyer’s utility with respect to 𝑝 (𝑛 − 1).

Induction step: Now, consider any level 𝑘 < 𝑛 and assume that

for any subgame perfect equilibrium, any level ℓ ∈ {𝑘 + 1, . . . , 𝑛},
and any node 𝑠′ at level ℓ , we have that𝑊 (𝑠′) is conditionally
efficient. We consider any node 𝑠 at level 𝑘 and we consider two

possibilities based on whether or not there is a bid 𝑏𝑘 ≥ 𝑐𝑘 that

bidder 𝑘 can make to become a winner in the corresponding child

node 𝑠′ (the child node of 𝑠 that corresponds to choosing strategy

𝑏𝑘 ) given the previously posted bids (𝑏1, . . . , 𝑏𝑘−1).
If no such bid exists, then bidder 𝑘 is not in𝑊 (𝑠) because for this

bidder to become a winner they would have to report a bid 𝑏𝑘 < 𝑐𝑘
that would return negative utility 𝑏𝑘 − 𝑐𝑘 . For every other bidder

and, hence, also for every 𝑖 ∈ 𝑊 (𝑠), we have that their level-𝑘

conditional price in 𝑠 and their level-(𝑘 + 1) conditional price in any

child node of 𝑠 is the same (either equal to their cost or equal to

their final price), and thus𝑊 (𝑠) is conditionally efficient.

If, on the other hand, there exists some bid 𝑏𝑘 ≥ 𝑐𝑘 that would

make bidder 𝑘 a winner, then the bidder’s optimal strategy is to

report such a bid in order to be one of the winners. This means that

that bidder 𝑘 will be a winner in the SPE of the subgame rooted at

𝑠 , so this bidder is in𝑊 (𝑠). Furthermore, this implies that𝑊 (𝑠) is
conditionally efficient in this case as well. Let 𝑠′ be the child node of
𝑠 that bidder 𝑘 chooses in the SPE and note that i)𝑊 (𝑠) maximizes

the buyer’s utility with respect to the level-(𝑘 +1) conditional prices
at node 𝑠′ and ii) level-(𝑘 + 1) conditional price of bidder 𝑘 at node

𝑠′ is weakly greater than the level-𝑘 conditional price of bidder 𝑘

at node 𝑠 (because the former is 𝑏𝑘 while the latter is equal to 𝑐𝑘 ,

and 𝑏𝑘 ≥ 𝑐𝑘 ). All other prices are the same so, using Lemma 3.3 we

conclude that𝑊 (𝑠) would also maximize the buyer’s utility with

respect to 𝑝 (𝑘).
□

Remark 3.4. The proof actually provides a partial computation
for equilibria. First, for any 𝑘 such that 𝑥∗

𝑘
= 1, where 𝑥∗ maximizes

𝑣 (𝑥) − 𝑐𝑥 , 𝑘 will choose the highest price for which max𝑥 𝑣 (𝑥) −
(𝑝1, . . . , 𝑝𝑘−1, 𝑝𝑘 , 𝑐𝑘+1, . . . , 𝑐𝑛)𝑥 results in 𝑥𝑘 = 1. When 𝑥∗

𝑘
= 0, one

choice that always results in an equilibrium is 𝑝𝑘 = 𝑐𝑘 , but there
could be higher prices that also result in equilibria.

Remark 3.5. When we specify the game, we need to specify a
(possibly adaptive) order in which the buyer will approach sellers and
that order becomes common knowledge among the sellers who then
use it to compute their SPE. Nevertheless, the proof of Theorem 3.2
shows that the SPE depends only on who are buyers that arrived before
and what was their BAFO. A remarkable property of this game, is
that sellers are able to compute their strategies without knowing the
order in which the buyer will approach the remaining sellers.

Remark 3.6. Note that our proof of the auction efficiency does not
make any assumptions regarding the order in which the bidders are
approached, so it holds for any possible, even adaptive, ordering. As
we show in Section 5, this is not true for the prices that the auction
returns, which can vary significantly, depending on the ordering.

4 Descending Auctions with BAFO
While the Name-Your-BAFO auction has efficient equilibria, it may

be a demanding auction format for the perspective of the sellers in

practice. They interact with the auction only once and, in this one

interaction, they need to choose one of infinitely many strategies:

a bid 𝑏𝑖 ∈ N. As an alternative format, we now present a class of

descending auction where the sellers have repeated interactions

with the auction as it gradually reduces the prices offered to each of

them, and in each interaction a seller needs to choose between just

two strategies: to either accept a price decrease or to permanently

freeze their price (make a BAFO). This option for a seller to freeze

their price is a feature that is often used in practice, but has not

received as much attention from an analytical standpoint.

Class of descending auctions. A vector of prices 𝑝 is initialized at

a very high level, say for every 𝑖 ∈ 𝑁 we have 𝑝𝑖 = ℎ where ℎ ∈ N is

some arbitrarily large value, and also initializes the set 𝐹 of “frozen”

sellers to be empty The auction then takes place over a sequence of

rounds, and in each round the auction computes a (possibly empty)

tentative allocation𝑊 (𝑝) based on the current prices, chooses a

seller 𝑖 ∉𝑊 (𝑝) ∪ 𝐹 who remains active (i.e., has not frozen their

price) and provides them with two options: (i) accept a decrease of

their price
3
from 𝑝𝑖 to 𝑝𝑖 ← 𝑝𝑖 − 1, or (ii) freeze their price at 𝑝𝑖 .

If a bidder freezes at 𝑝𝑖 , this means that this is their best and final

offer, so the bidder is added to set 𝐹 and the auction never attempts

to lower their price again in the future. Each bidder’s decision to

accept a reduced price or freeze is observed by every other bidder,

3
Note that we assumed that all costs are natural numbers, using some small enough

monetary denomination, like $ or ¢, so we can safely restrict our attention to price

decrements of 1. We could, alternatively, just choose a small enough decrement of 𝜖 .
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so both the current prices and the subset of bidders whose prices are

frozen (i.e., the set 𝐹 ) is public knowledge. There are no restrictions

on the order in which the sellers are approached. In particular, it

can be history dependent, i.e., dependent of the sellers’ choices

along the way. The auction terminates after all sellers not in the

tentative allocation𝑊 (𝑝) have frozen their prices. We assume that

if a price reaches zero, the seller automatically freezes. Once all

prices are finalized, the set of winners is determined to be the set

that maximizes the buyer’s utility at the given prices. If there are

multiple such sets, the auction uses a tie-breaking rule that satisfies

IIA.

Extensive form game tree. Each descending auction from the class

above induces an extensive form game which can be represented

as a tree, with each node corresponding to the interaction of the

auction with some seller 𝑖 , asking them to either accept a reduction

of their price by 1 or permanently freeze it. Note that in each round

of this game one of the prices is either frozen or decreased by an 1

and no price can drop below zero, so the game is finite. For each

node 𝑠 of this tree, we use 𝑝 (𝑠) to denote the price vector at the time

when the auction reaches this node 𝑠 and we use 𝐹 (𝑠) to denote

the set of sellers that have already chosen to freeze, i.e., they chose

to freeze at some node on the path from the root to node 𝑠 . Note

that 𝑝 (𝑠) and 𝐹 (𝑠) are both fully determined by the path from the

root to 𝑠 , as the edges of this path determine when each price is

decreased or frozen. If, at node 𝑠 , the seller 𝑖 who was asked to

reduce their price accepts this reduction, then we proceed to the

left child-node of 𝑠 , which we denote as 𝑠ℓ , and if 𝑖 does not accept

this reduction and instead chooses to freeze, then we proceed to

the right child-node of 𝑠 , which we denote by 𝑠𝑟 . Also, let 𝐺 (𝑠) be
the subgame that corresponds to the substree rooted at 𝑠 .

Note that, since the sequence in which the sellers are approached

by the descending auction can depend in non-trivial ways on the

observed strategic choices, this can lead to an unpredictable tra-

jectory for the price vector. At first glance, this suggests that the

induced game would be very demanding for the sellers to play,

but our key lemma (Lemma 4.1) shows that sellers do not need

to know anything regarding the future price trajectory or details

regarding the history to compute their optimal strategy. They only

need access to 𝑝 (𝑠) and 𝐹 (𝑠).

4.1 Analysis of Descending Auctions with BAFO
Given a descending auction and some problem instance, consider

any subgame perfect equilibrium of the game tree induced by this

auction. We annotate each node 𝑠 in the game tree with the final

allocation𝑊 (𝑠) resulting from playing the given subgame perfect

equilibrium of the subtree rooted at 𝑠 .

Definition 4.1. For each node 𝑠 in the descending auction game
tree, we define a price vector 𝑝 (𝑝 (𝑠), 𝐹 (𝑠)), or just 𝑝 (𝑠), such that

𝑝𝑖 (𝑠) =
{
𝑝𝑖 (𝑠), if 𝑖 ∈ 𝐹 (𝑠)
𝑐𝑖 , otherwise.

We show the following lemma using backwards induction:

Lemma 4.1. For every node 𝑠 of the descending auction game tree,
the allocation𝑊 (𝑠) resulting as the subgame-perfect equilibrium of

𝐺 (𝑠) is an allocation that maximizes the buyer’s utility with respect
to cost vector 𝑝 , i.e., an allocation

𝑊 (𝑠) ∈ argmax

𝑋
𝑣 (𝑋 ) −

∑︁
𝑖∈𝑋

𝑝𝑖 (𝑠) .

If there are multiple such allocations,𝑊 (𝑠) is chosen using the same
tie-breaking rule that the auction uses to determine the set of winners.

Proof. To verify that the lemma holds for every leaf of the

game tree, we observe that at every leaf node 𝑠 all prices have

been permanently frozen, so the vector 𝑝 of prices is finalized. The

buyer’s chosen allocation in response to these prices would be the

allocation 𝑋 that maximizes 𝑣 (𝑋 ) −∑𝑖∈𝑋 𝑝𝑖 (𝑠). Since every seller

is frozen at 𝑠 , i.e., 𝐹 (𝑠) = 𝑁 , we have 𝑝𝑖 (𝑠) = 𝑝𝑖 (𝑠) for all 𝑖 , so the

chosen allocation also maximizes 𝑣 (𝑋 ) −∑𝑖∈𝑋 𝑝𝑖 (𝑠). If there are
multiple such allocations, our auction is designed to consistently

tie-break, so the lemma holds for all leaves.

Now, consider an internal node 𝑠 of the game tree and assume

that the lemma holds for all of its descendants. Let 𝑖 be the seller

who, at node 𝑠 , is asked to either accept a price decrease from 𝑝𝑖 (𝑠)
to 𝑝𝑖 (𝑠) − 1 (leading to child-node 𝑠ℓ ) or to freeze at 𝑝𝑖 (𝑠) (leading
to child-node 𝑠𝑟 ). By our inductive assumption, if 𝑖 accepts the price

decrease, the resulting allocation will be

𝑊 (𝑠ℓ ) ∈ argmax

𝑋
𝑣 (𝑋 ) −

∑︁
𝑖∈𝑋

𝑝𝑖 (𝑠ℓ ), (2)

and, if 𝑖 chooses to freeze, the resulting allocation will be

𝑊 (𝑠𝑟 ) ∈ argmax

𝑋
𝑣 (𝑋 ) −

∑︁
𝑖∈𝑋

𝑝𝑖 (𝑠𝑟 ), (3)

and in both cases any ties are broken using the same tie-breaking

rule.

Now, to identify seller 𝑖’s optimal strategy at node 𝑠 we consider

four cases based on whether 𝑖 wins or loses in the aforementioned

allocations𝑊 (𝑠ℓ ) and𝑊 (𝑠𝑟 ):
• Case 1: Agent 𝑖 loses at𝑊 (𝑠ℓ ). Note that if this is the case,

then seller 𝑖 also loses at𝑊 (𝑠𝑟 ). To verify this fact, note that

𝑝𝑖 (𝑠ℓ ) = 𝑝𝑖 (𝑠) − 1 and 𝑝𝑖 (𝑠𝑟 ) = 𝑝𝑖 (𝑠), so 𝑝𝑖 (𝑠𝑟 ) > 𝑝𝑖 (𝑠ℓ ), while
𝑝 𝑗 (𝑠𝑟 ) = 𝑝 𝑗 (𝑠ℓ ) for all other sellers 𝑗 ≠ 𝑖 . Therefore, for every

winner 𝑗 ∈ 𝑊 (𝑠ℓ ) we have 𝑝 𝑗 (𝑠𝑟 ) = 𝑐 𝑗 (𝑠ℓ ) and every loser

𝑗 ∉𝑊 (𝑠ℓ ) we have 𝑝 𝑗 (𝑠𝑟 ) ≥ 𝑐 𝑗 (𝑠ℓ ). From the statement of the

lemma we can conclude that𝑊 (𝑠𝑟 ) =𝑊 (𝑠ℓ ), which means that

the allocation𝑊 (𝑠) resulting from playing the subgame-perfect

equilibrium of𝐺 (𝑠) is independent of 𝑖’s strategic choice at node
𝑠 and, hence,𝑊 (𝑠) =𝑊 (𝑠ℓ ) =𝑊 (𝑠𝑟 ).
Since𝑊 (𝑠) =𝑊 (𝑠ℓ ), to prove that the lemma holds for node 𝑠

as well, it suffices to show that

𝑊 (𝑠ℓ ) ∈ argmax

𝑋
𝑣 (𝑋 ) −

∑︁
𝑖∈𝑋

𝑝𝑖 (𝑠), (4)

and that this allocation would be chosen in case of ties. To verify

that both of these are true, note that 𝑝 𝑗 (𝑠) = 𝑝 𝑗 (𝑠ℓ ) for every
seller 𝑗 , since no additional freezing took place between 𝑠 and 𝑠ℓ .

Therefore, our inductive assumption that the lemma holds for

node 𝑠ℓ directly implies that the lemma also holds for 𝑠 .

• Case 2: Agent 𝑖 wins at both𝑊 (𝑠ℓ ) and𝑊 (𝑠𝑟 ). If this is the
case, then seller 𝑖 would choose to freeze, since they would win

in both cases (due to the inductive hypothesis), but the price that

𝑖 would receive if they freeze is higher (it will be exactly 𝑝𝑖 (𝑠) if
6
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they freeze, while it would be at most 𝑝𝑖 (𝑠) − 1 if they do not).

Therefore, given this strategic choice of 𝑖 , the resulting allocation

𝑊 (𝑠) of 𝐺 (𝑠) will be the same as𝑊 (𝑠𝑟 ).
Since𝑊 (𝑠) =𝑊 (𝑠𝑟 ), to prove that the lemma holds for 𝑠 as well,

it suffices to show that

𝑊 (𝑠𝑟 ) ∈ argmax

𝑋
𝑣 (𝑋 ) −

∑︁
𝑖∈𝑋

𝑝𝑖 (𝑠), (5)

and that 𝜏 would choose this allocation in case of ties. We can ver-

ify that (5) holds by using the fact that𝑊 (𝑠𝑟 ) satisfies condition
(3) and then observing that the only difference between 𝑝 (𝑠𝑟 )
and 𝑝 (𝑠) is the fact that 𝑝𝑖 (𝑠𝑟 ) ≥ 𝑐𝑖 (𝑠) because in 𝑠𝑟 seller 𝑖 froze
at a price at least 𝑐𝑖 . Therefore, for each set that does not contain

𝑖 their “cost” relative to 𝑝 is the same between 𝑠 and 𝑠𝑟 , while the

“cost” relative to 𝑝 of all sets that include 𝑖 dropped by the same

amount. The fact that 𝑖 ∈𝑊 (𝑠𝑟 ) implies that𝑊 (𝑠𝑟 ) satisfies (5).
To also verify that 𝜏 would choose𝑊 (𝑠𝑟 ) in case of ties with

respect to 𝑝 (𝑠), note that 𝑐 𝑗 (𝑠𝑟 ) ≤ 𝑐 𝑗 (𝑠) for all 𝑗 ∈ 𝑊 (𝑠𝑟 ) and
𝑐 𝑗 (𝑠𝑟 ) ≥ 𝑐 𝑗 (𝑠) for all 𝑗 ∉𝑊 (𝑠𝑟 ), so the fact that 𝜏 chose𝑊 (𝑠𝑟 )
given 𝑝 (𝑠𝑟 ) (by our inductive assumption) implies that 𝜏 would

also choose𝑊 (𝑠𝑟 ) given 𝑝 (𝑠) (by definition of the tie-breaking

rule). This implies that the lemma holds also for 𝑠 .

• Case 3A: Agent 𝑖 wins at𝑊 (𝑠ℓ ) for a price less than 𝑐𝑖 and
loses at𝑊 (𝑠𝑟 ). In this case, if seller 𝑖 accepted the price decrease

they would end up winning, but for a price that is strictly lower

than their cost, leading to negative utility. They would instead

prefer to freeze at price 𝑝𝑖 (𝑠) and lose in order to maintain a

non-negative utility, so the resulting allocation is𝑊 (𝑠) =𝑊 (𝑠𝑟 ).
Since𝑊 (𝑠) =𝑊 (𝑠𝑟 ), to prove that the lemma holds for 𝑠 as well,

it suffices to show that

𝑊 (𝑠𝑟 ) ∈ argmax

𝑋
𝑣 (𝑋 ) −

∑︁
𝑖∈𝑋

𝑝𝑖 (𝑠),

and that the tie-breaking rule would choose this allocation in

case of ties. We can once again verify that this is true using

the fact that𝑊 (𝑠𝑟 ) satisfies condition (3), combined with the

facts that 𝑝𝑖 (𝑠𝑟 ) ≥ 𝑝𝑖 (𝑠) for seller 𝑖 who is not in𝑊 (𝑠), while
𝑝 𝑗 (𝑠𝑟 ) = 𝑝 𝑗 (𝑠) for all other sellers 𝑗 ≠ 𝑖 .

Case 3B: Agent 𝑖 wins at𝑊 (𝑠ℓ ) for a price of at least 𝑐𝑖 and
loses at𝑊 (𝑠𝑟 ). In this case, seller 𝑖 prefers the outcome of winning

at 𝑊 (𝑠ℓ ) for a price that would give them non-negative utility

rather than losing at𝑊 (𝑠𝑟 ), which would give them zero utility. As

a result, they would accept the price decrease and𝑊 (𝑠) =𝑊 (𝑠ℓ ).
Since𝑊 (𝑠) =𝑊 (𝑠ℓ ), to prove that the lemma holds for 𝑠 as well,

it suffices to show that

𝑊 (𝑠ℓ ) ∈ argmax

𝑋
𝑣 (𝑋 ) −

∑︁
𝑖∈𝑋

𝑝𝑖 (𝑠),

and that 𝜏 would choose this allocation in case of ties. We can once

again verify that this is true using the fact that 𝑝 𝑗 (𝑠) = 𝑝 𝑗 (𝑠ℓ ) for
every seller 𝑗 , since no additional freezing took place between 𝑠

and 𝑠ℓ . Therefore, our inductive assumption that the lemma holds

for node 𝑠ℓ directly implies that the lemma also holds for 𝑠 . □

Using Lemma 4.1, we can now verify that the descending auction

is guaranteed to be efficient in any subgame-perfect equilibrium.

Theorem 4.2. The allocation induced by any descending auction
in any subgame perfect equilibrium is always efficient.

Proof. Let 𝑠 be the root node of the game tree. Since no seller

has had a chance to freeze at that point, i.e., 𝐹 (𝑠) = ∅, we have

𝑝𝑖 = 𝑐𝑖 for all 𝑖 . Using Lemma 4.1 for 𝑠 we can conclude that

the allocation𝑊 (𝑠) resulting from a subgame-perfect equilibrium

satisfies

𝑊 (𝑠ℓ ) ∈ argmax

𝑋
𝑣 (𝑋 ) −

∑︁
𝑖∈𝑋

𝑐𝑖 (𝑠),

which implies that it is an efficient allocation. □

Remark 4.3. Similar to Remark 3.5 the proof Theorem 4.2 shows
that sellers don’t need to know the order in which the buyer will
approach sellers to compute their SPE.

Remark 4.4. If the valuation function satisfies gross substitutes,
then the final allocation never includes a seller that froze their price.
By the definition of subtitutability, if an item is not demanded at a
given price vector, it is not demanded at any vector where every other
price is weakly smaller. Hence, for the special case of substitutes, our
auction behaves exactly like the procedure of Kelso and Crawford [13].

5 Price Vectors Supporting the Efficient Solution
Having shown that the SPE of these auctions are always efficient,

we now analyze their performance in terms of the price vectors that

support these efficient allocations. As a warm-up, we first provide

a small example that verifies these prices are not unique; not even

with respect to their sum, i.e., the buyer’s total cost. We prove

this for the Name-Your-BAFO auctions, but note that this directly

extends to the descending auction with BAFO if we approach the

sellers in the same order and lower the price of each seller until

they freeze.

Claim 5.1. Executing the Name-Your-BAFO auction with different
orderings of the sellers leads to the same efficient allocation in every
subgame perfect equilibrium but the resulting prices need not sum up
to the same amount.

Proof. Consider an instance with three sellers {1, 2, 3} such
that the buyer’s value for its subsets is 𝑣 ({1}) = 𝑣 ({3}) = 10.

𝑣 ({1, 2, 3}) = 20, and 𝑣 (𝑆) = 0 for any other subset 𝑆 . Let the costs

of all sellers be 0. Then, 𝑥∗ = {1, 2, 3} and the order in which our

algorithm raises the sellers’ prices actually matters: if the algorithm

starts by raising the price of seller 2, it will stop when the price is

equal to 10 and the prices of sellers 1 and 3 cannot be raised after

that point, leading to price vector 𝑝 = (0, 10, 0). If, on the other

hand, our algorithm starts by raising the price of seller 1, it will

stop when that agent’s price is equal to 10, but it can then also raise

the price of seller 3 by the same amount, leading to a price vector of

𝑝′ = (10, 0, 10). In particular, when raising the price of sellers who

are also part of competing allocations allows the prices to be raised

further, since raising those prices also hurts the competition. □

Now, moving to a more complicated example, we show that even

for the special class of anonymous valuations, that depend only on

the number of sellers rather than who these sellers are, the total

cost of the buyer can vary by a factor that grows linearly with the

number of sellers.

Theorem 5.2. Even if the valuation function of the buyer is as-
sumed to be anonymous, the sum of the prices of two distinct price

7
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vectors that arise from executions of the Name-Your-BAFO auction
with different seller orderings can vary by a factor 𝑛/2, where 𝑛 is the
total number of sellers. This bound is tight. On the other hand, if the
anonymous valuation function is also weakly concave, then the price
vector that supports 𝑥∗ as a SPE equilibrium is unique (a threshold
price for all winners).

Proof. Consider an instance with n sellers where the value of

the buyer for any set of up to 𝑛 − 2 sellers is equal to the size of

the set, i.e., additive with value 1 per seller. However, the value of

any set of 𝑛 − 1 sellers has value 𝑛 − 2 as well, while the set 𝑥∗ that
includes all agents has value 𝑛 − 1. The cost of every seller is zero.

We first claim that the price vector (0, 0, . . . , 0, 1) supports 𝑥∗ as
a SPE equilibrium. The utility of 𝑥∗ under these prices would be

𝑛 − 2 (a value of 𝑛 − 1 minus a total payment of 1) and if any seller

𝑖 were to raise their price, the utility of 𝑥∗ would drop below 𝑛 − 2,
while the set 𝑥∗ − {𝑖, 𝑛} would have a value of 𝑛 − 2 and a cost of 0,

maintaining a utility of 𝑛 − 2 and leading to an inefficient outcome

of 𝑥∗ − {𝑖, 𝑛} instead of 𝑥∗. (note that even if 𝑖 = 𝑛 the set {𝑖, 𝑛}
equals {𝑛} and the above still holds)

We now claim that the price vector (1/2, 1/2, . . . , 1/2, 1/2) also
supports 𝑥∗ as a SPE equilibrium. The utility of 𝑥∗ under this price
vector would be 𝑛/2−1 (a value of 𝑛−1 and a total payment of 𝑛/2),
while the utility of any other subset would be at most 𝑛/2− 1 (a set
of 𝑛−1 sellers has value 𝑛−2 and price (𝑛−1)/2, leading to a utility
of 𝑛/2−3/2, and a set with 𝑘 ≤ 𝑛−2 sellers has value at most 𝑘 and

price exactly 𝑘/2, leading to a utility of 𝑘 − 𝑘/2 = 𝑘/2 ≤ 𝑛/2 − 1).
If any seller 𝑖 were to raise their price, the utility of 𝑥∗ would drop

below 𝑛/2 − 1, while the set 𝑥∗ − {𝑖, 𝑗}, where 𝑗 is any seller other

than 𝑖 , would have a value of 𝑛 − 2 and a cost of (𝑛 − 2)/2, leading
to utility at least (𝑛 − 2)/2 = 𝑛/2 − 1.

Tightness: To prove that the bound of 𝑛/2 is tight, given any

instance let 𝑝 and 𝑝′ be any two price vectors that support 𝑥∗ as a
SPE equilibrium. We will prove that the sum of prices in 𝑝′ cannot
be more than a factor 𝑛/2 greater than the sum of the prices in 𝑝 . In

fact, if we let 𝑘 denote the size of 𝑥∗, we will prove that the factor
can be no more than 𝑘/2. Our argument uses the fact that given any

price vector 𝑝 , if we order the sellers in weakly increasing order

of their prices, the solution that maximizes the buyer’s utility is a

prefix of that ordering.

Assume that 𝑥∗ contains k sellers and let 𝑝1, 𝑝2, . . . , 𝑝𝑘 be the

𝑘 smallest prices in 𝑝 , in weakly increasing order. The fact that 𝑝

supports 𝑥∗ as a SPE equilibrium means that if we were to raise

𝑝1 by an arbitrarily small amount, then the seller whose price we

raised would become a loser. Let 𝑘′ be the number of winning

sellers in the new solution after this change in 𝑝1.

Case 1: If 𝑘′ >= 𝑘 even though the seller whose price was raised

is now a losing bidder, this must mean that the price of this seller

is now greater than the 𝑘′ smallest ones in 𝑝 and, hence, 𝑝1 must

have been equal to 𝑝𝑘 + 1 , i.e., equal to the smallest price among

the original losing sellers. However, since 𝑝 and 𝑝′ support 𝑥∗ as
a SPE equilibrium, the prices of each losing seller are the same in

𝑝 and 𝑝′ and this means that all the prices that 𝑝′ assigns to the 𝑘

winning sellers are all at most 𝑝𝑘 + 1 and, therefore, also at most

𝑝1 (since we just argued that 𝑝1 = 𝑝𝑘 + 1 in this case), which is the

smallest price in 𝑝 . As a result, this would imply that the minimum

price in 𝑝 is at least as large as the maximum winning price in 𝑝′,

so the total price in 𝑝 would be at least as high as the total price in

𝑝′.
Case 2: If 𝑘′ < 𝑘 , i.e., the size of the solution after raising 𝑝1 is

strictly smaller, using the fact that the new solution contains the

sellers with prices 𝑝2 + 𝑝3 + ... + 𝑝𝑘 ′+1, we can infer that

𝑝1 + 𝑝𝑘 ′+2 + 𝑝𝑘 ′+3 + · · · + 𝑝𝑘−1 + 𝑝𝑘 = 𝑣 (𝑘) − 𝑣 (𝑘′),
i.e., the marginal value of the last 𝑘−𝑘′ sellers in 𝑥∗ was equal to the
sum of their prices (since the seller with price 𝑝1 + 𝜖 was rejected,
it must mean that their price was already among the highest 𝑘 − 𝑘′
up to tie-breaking). But, for any other price vector 𝑝′ to support

𝑥∗, it must also be the case that the k-k’ highest prices must be

upper bounded by v(k)-v(k’), otherwise dropping the corresponding

sellers would lead to higher buyer utility. Therefore:

𝑝′
𝑘 ′+1 + 𝑝

′
𝑘 ′+2 + 𝑝

′
𝑘 ′+3 + · · · + 𝑝

′
𝑘−1 + 𝑝

′
𝑘
≤ 𝑣 (𝑘) − 𝑣 (𝑘′),

Combined, with the previous equation, this yields:

𝑝′
𝑘 ′+1+𝑝

′
𝑘 ′+2+𝑝

′
𝑘 ′+3+· · ·+𝑝

′
𝑘−1+𝑝

′
𝑘
≤ 𝑝1+𝑝𝑘 ′+2+𝑝𝑘 ′+3+· · ·+𝑝𝑘−1+𝑝𝑘 .

For 𝑘′ = 𝑘 − 1, this implies that 𝑝′
𝑘
≤ 𝑝1, which would once

again lead to the conclusion that the total price in 𝑝 is at least as

high as the total price in 𝑝′. For 𝑘′ = 𝑘 − 2, the inequality becomes

𝑝′
𝑘−1 + 𝑝

′
𝑘
≤ 𝑝1 + 𝑝𝑘 ⇒

2

𝑘

𝑘∑︁
𝑖=1

𝑝′𝑖 ≤ 𝑝′
𝑘−1 + 𝑝

′
𝑘
≤ 𝑝1 + 𝑝𝑘 ≤

𝑘∑︁
𝑖=1

𝑝𝑖 ⇒

𝑘∑︁
𝑖=1

𝑝′𝑖 ≤
𝑘

2

𝑘∑︁
𝑖=1

𝑝𝑖 ,

where the first derivation used the fact that 𝑝′
𝑘−1 and 𝑝′

𝑘
are the

top two prices among the 𝑘 winners in 𝑝′ and thus also at least

as high as two times the average price among the winners. In

general, if we use 𝑑 to denote the drop in the size of the winning

set, i.e., 𝑑 = 𝑘 − 𝑘′ ≥ 2, then following the same argument we get∑𝑘
𝑖=1 𝑝

′
𝑖
≤ 𝑘

𝑑

∑𝑘
𝑖=1 𝑝𝑖 , and the right hand side is maximized when

𝑑 = 2, which yields the desired upper bound on the total price of

𝑝′.
Concave valuation functions: Note that if the valuation function

is concave, then the optimal solution 𝑥∗ can be derived as follows.

Order the sellers in a weakly increasing order of their cost and

rename them so that 𝑐𝑖 is the 𝑖-th smallest cost. Then, if we let

𝑣 (𝑘) − 𝑣 (𝑘 − 1) denote the marginal change in the buyer’s value

after adding a 𝑘-th seller to a set of 𝑘−1 sellers, the optimal solution

corresponds to the prefix of sellers in the aforementioned ordering

for which 𝑣 (𝑘)−𝑣 (𝑘−1) ≥ 𝑐𝑘 , i.e., their marginal contribution to the

buyer’s value is at least as high as their cost. In any SPE equilibrium,

the price offered to the winning sellers, i.e., the first k sellers in

the ordering is the same, and equal to 𝑣 (𝑘 + 1) − 𝑣 (𝑘). It is easy
to verify that these prices would support 𝑥∗ as a SPE equilibrium,

so we now show that no other price vector can support 𝑥∗ as a
SPE equilibrium. Consider any other price vector that supports 𝑥∗

as a SPE equilibrium and note that if one of the smallest 𝑘 prices,

i.e., a price of one of the 𝑘 winning sellers of 𝑥∗, is higher than
𝑣 (𝑘 + 1) − 𝑣 (𝑘), then dropping that seller from the winning set

would increase the buyer’s utility. On the other hand, if one of

these 𝑘 prices is lower than 𝑣 (𝑘 + 1) − 𝑣 (𝑘), then the corresponding

seller could raise their price while remaining in the winning set. □
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