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MECHANISM DESIGN BY COMPETING SELLERS

By R. PrESTON MCAFEE!

A dynamic model with many sellers and many buyers is constructed, in which buvers
who fail to purchase in the current period may attempt to purchase in the future, and
sellers who fail to sell may sell in the future. An equilibrium js found where sellers hold
identical auctions and buyers randomize aver the sellers they visit. Auctions alter the
distribution af buyer types by removing high value buyers more rapidly than low value
buyers, and an equilibrium distribution of buyer types is constructed. Sellers in equilib-
rium post an efficient reserve price equal to the sellers’ value of the good, and an auction
with efficient reserve is an optimal mechanism fram. each seller’s point of view, in spite of
the ability of any seller to alter the distribution of buyer types participating in the seller’s
mechanism by altering the mechanism.

Keyworns: Auction, competitive equilibrium, asymmetric information, mechanism
design, price formation.

1. INTRODUCTION

THE STANDARD AUCTION MODEL? pasits a monopoly seller of a single good. In
contrast, this paper considers a model in which many sellers, each with a single
goad to sell, compete for buyers. At any given time, each buyer may participate
in at most one seller’s mechanism. Thus, unlike the standard model, a seller
must offer surplus to the buyer sufficient to attract the buyer away from
alternative sellers, and this surplus is determined endogenously, by the equilib-
rium auctions or mechanisms employed by other sellers.

The literature on price formation divides naturally into two categories. In the
first, the seller of a unique item designs a mechanism to maximize his expected
profits. In the second category, many sellers compete according to a fixed set of
rules.” The present study differs from the first category by introducing compet-
ing sellers, but retains the endogeneity of the selling institution by allowing
sellers to choose mechanisms as part of the game. The present study differs
from the second category in three significant respects. With the exception of the
Bertrand model, extant models of competing sellers impose an exogenous
technology matching buyers and sellers. In contrast, I will place sellers at fixed
locations and allow buyers to choose which seller they go to in each period. In

' thank Kim Border, Dan Vincent, Philip Reny, Alan Slivinski, and two anonymous referees for
assistance. I am especially indebted to Martin Hellwig, who identified many problems with the
manuscript and suggested ways of fixing them. I am responsible for all remaining problems. Early
drafts of this paper were completed at the University of Western Ontario and the California
Institute of Technology.

?See McAfee and McMillan (1987) for a survey.

3 The Bertrand model is the first model to incorporate agents who choose prices. More recent
treatments, for example, Diamond (1982), Rubinstein and Wolinsky (1983), Gale (1986}, and
Wolinsky (1988), introduce matehing and market dynamics, but probibit buyers from choosing their
preferred seller, in favar of an exogenous matching technology. The present model may be viewed as
a capacity constrained Bertrand model with an enriched strategy space for the sellers.
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equilibrium, all sellers will use identical auctions, and buyers will randomize
over the set of sellers. However, the ability of a seller to deviate and employ a
different mechanism, for example, by lowering the reserve price, imposes an
equilibrium condition which would not be present were an exogenous matching
technology imposed. In this model, this equilibrium condition forces sellers to
post an efficient reserve price, so that the reserve price equals the value of the
item to the seller, which in turn equals the present discounted value of being a
seller in the next period.

The second significant difference of the present study involves the endogene-
ity of the transaction mechanism. In the existing literature, the mechanism is
typically Nash bargaining, although more recent studies, for example Rubinstein
and Wolinsky (1985), allow for strategic behavior within a given bargaining
framework (alternating offers). In the present model, sellers may choose any
mechanism for transaction. Thus, the transaction institution, in this case, an
auction, arises endogenously, as in the first category of the price formation
literature.

The final difference is that the model allows for one-sided asymmetric
information. That is, buyers know their own valuation for the sellex’s good, and
this differs across buyers. Because of the revenue equivalence theorem,* the
type of auction will not be uniquely determined. Auctions tend to remove high
value buyers more rapidly than low value buyers; the equilibrium value distribu-
tion of the stock of buyers will not generally coincide with the value distribution
of an entering cohort of buvers. Thus, allowing buyer valuations to differ across
buyers permits the value distribution in the pool of buyers to be endogenously
determined.’

The analysis cancentrates on a steady state environment. The analytic prob-
lems described by Gale (1986} for this kind of model basically do not arise, with
one exception. If all sellers hold auctions with constant reserve price in every
period, then the steady state is globally stable. However, away from the steady
state, the seller's desire to hold an auction persists, but the equilibrium reserve
price may vary as the system evolves, and it does not appear feasible to prove
global stability as the reserve price varies. This weakens, but does not vitiate,
the validity of analyzing steady states.

The structure of the paper is as follows. The second section presents the
model, the equilibrium concept, and some mathematical preliminaries. The
third section identifies conditions when auctions comprise a unique symmetric
equilibrium in any period. The fourth section considers large economy steady

4 The revenue equivalence thearem states that, with symmetric independently distributed private
huyer values, all the common auction forms produce the same expected rents for the seller and
buyers, and, with appropriate reserve price, maximize the seller’s expected profits, given a condition
on the distribution of buyer types. See Milgrom and Weber (1982) and Myersan (1981),

* Walinsky (1988} allows for one-sided asymmetric information, His model differs from the
present study by the first two differences described above. In addition, Walinsky’s buyers receive
new draws in each period, so the value distribution in the stock of buyers is not endogenous.
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state equilibrium. Comparative statics are offered in the fifth section, and the
model’s defects are discussed in the conclusion.

2. PRELIMINARIES

I begin with an informal description of the model, with the exact meaning of
some of the terms clarified below. Periods in the model are nonnegative integers
t=0,1,2... . At the beginning of a period, there is a stock of buyers and sellers
inherited from the previous period. The first action of each periad is for sellers
to simulataneously choose mechanisms from the class of direct mechanisms (see
Myerson (1982)). These mechanisms map buyers’ reported types into feasible
outcomes, that is, who gets the good and how much each agent pays. The
mechanisms are constrained to be arnonymous with respect to the buyers, that
is, they cannot distinguish among different buyers except on the basis of the
reports by buyers to the mechanism.® Each mechanism must specify the out-
come as a function of both the buyers’ reported types and the number of buyers,
because at the time of selecting the mechanism, the seller does not know how
many buyers will be participating in the mechanism. The mechanisms are
constrained by the fact that each seller has only one unit of the good to sell.
Sellers have zero use value for their unit of the good.

Once sellers have chosen their mechanisms, these mechanisms are announced
to the buyers. Buyers simultaneously choase which mechanism they will partici-
pate in, and they may choase at most one in a given period. Buyers then arrive
at the mechanism. Each mechanism takes reports from the buyers, and dictates
the allocation of the good and payments made by the buvers. Buvers are
assumed to not know the realization of the number of buyers participating in
the mechanism they chose to participate in, although of course in equilibrium
they know the distribution of the number of participants. The mechanisms are
operated on the set of participating buyers. If the mechanism dictates that a
buyer receive the good, both the buyer that receives the good and the seller exit
from the game. Other buyers remain in the stock of buyers. If the mechanism
dictates that the seller retain the good, all buyers and the seller remain in the
stock of buyers and sellers, respectively. Once the mechanisms have operated,
nature operates on the existing stocks, removing each buyer and seller with
probability (1 — a) independently of the history of the game. Once nature has
moved, § new sellers and S new buyers are added to the stock of buyers and
sellers, respectively. The entry of new buyers and sellers ends the period, and
the next period begins with the current stock of sellers choosing mechanisms.

Each new seller has one unit of the good, and each new buyer has a valuation
for one unit of the good which is drawn from the cumulative distribution

5 This assumption amoutits to assuming that the seller does not know the buyers’ names, nor does
the seller have any way to identify buyers except by the buyers’ own reports to the mechanism. It is a
useful assumption because it prohibits the seller from choasing a mechanism which does not admit a
symmetric equilibrium amang the buyers; that is, all buyers of a given type use the same strategy.
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function F, and each entering buyers’ valuation is drawn independently of the
history of the game and of the other new buyers’ valuations. Once endowed with
a valuation, a buyer’s valuation does nat change. The distribution function F is
assumed to have a continuous density f and f has support [0, 1]. Buyers and
sellers have linear utility and apply discount §' to period t.

The analysis combines elements of game theoretic analysis and of traditional
competitive-equilibrium analysis. Along the lines of traditional competitive-
equilibrium analysis, it is assumed that agents neglect certain strategic repercus-
sions of their actions because they are small when the economy is large.
Specifically, all agents neglect the effects of the actions of any one seller on the
surplus available to buyers who do not participate in the seller’s mechanism. In
addition, all agents neglect the effect of the behavior of a single seller on
available future profits. In contrast, strategic interdependencies within a group
of buyers participating in a given mechanism are fully taken into account,
Analysis of these interdependencies is simplified by a condition related to
Harsanyi and Selten’s (1988) notion of subgame consistency. Subgame consis-
tency, when combined with a single-valued solution concept, requires that
identical subgames will have the same solution. Since the present model
invalves private information, the appropriate notion here is subform consis-
tency, which requires that all identical subforms are played in the same way. In
the present model, this will produce stationary strategies.

Specifically, suppose that seller | deviates in period ¢ from the equilibrium
path, by offering some other mechanism. I assume

(i) that all agents believe the expected profits in period ¢ of buyers wha do
not participate in seller i’s mechanism to be invariant to seller i’s choice of
mechanism, and

(ii) that all agents believe the expected profits associated with future periods
are invariant to the deviation of a seller in the current period.

Giiven the beliefs implied by (i} and (ii}, and the expected behavior of ather
agents, each agent maximizes expected utility, and I call such behavior a
Competitive Subform Consistent Equilibrium (CSCE).

In a large economy, it is clear that any one seller’s choice of mechanism on
the utility of buyers who don’t participate in that mechanism will be small, of
order 1/m, where m is the number of sellers. However, in the formulation of
equilibrium, 1 will force the sellers to neglect this effect entirely, which is
analogous to the presumption in competitive equilibrium that all agents neglect
their effect on prices. The analogy is quite close, because the utility a buyer
obtains at an alternative seller is the “price” that a seller has to pay to attract
the buyer to his mechanism, as the seller must offer the buyer at least as much
utility as that buyer obtains at an alternative mechanism. Assumption (i) should
be satisfied in an economy with infinitely many sellers. This assumption is not
atherwise defensible, and is made only for tractability.

Assumption (ii} permits the continuation values in the model to be embedded
in the current period by way of functions invariant to the behavior in the current
period. This implies several restrictions. First, a deviating seller believes he can
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return to the equilibrium path, if he doesn’t sell in the current period. Second,
to attract a buyer in the current period, a seller must offer more than the
discounted value of being a buyer in a future period. This amount is assumed
invariant to what the seller actually offers. The assumption implies a strong
form of subform consistency, in that the option value of the future is not
presumed to change when a deviation occurs. Assumption (ii} is also unreason-
able in an economy with finitely many players, but is reasonable with infinitely
many players, and in this circumstance it corresponds to stationarity of beliefs in
the face of deviations.

RemARrk 1: Assumption (ii) guarantees that, in any given period ¢, there is a
value 9* of being a seller in the next period, and a function =}, , which gives
the value of being a buyer in the next period as a function of the buyer’s
valuation, and that these are invariant to behavior period t.

I will restrict sellers to use direct anonymous mechanisms, that is, their
mechanisms cannot depend on the identity of the buyer. As a result, the
functions used in seller mechanisms, such as the price or probability of obtain-
ing the object, must satisfy an invariance property with respect to permutations
of the buyers’ reports. For x € R”, let (x;, x,, X_; ;) represent the permutation
veetor (Xy, ..., X, 1y X Xippseny Xy Xy Xy, o, X,). If A CR”, a function f:
A — R" is permutation invariant if

f(x)= (fj(xpxu X_g i) filxp X x g gy Foy (x5 X5 x—s,;)):

where f, are the component functions of f. That is, f is permutation invariant
if permuting x permutes f(x) in the same fashion.

If n buyers show up at a given seller’s mechanism, the seller is permitted to
ask the buyers for reports of their values, and then can charge the ith buyer an
amount P, and offer a probability of obtaining the good of {,, which may
depend on the entire vector of reports. A direct mechanism must specify these
functions, for every integer #, up to the maximum possible number #n,. A direct
anonymous mechanism is a set of functions {(Q", P")}» |, where 0™ [0,1]* -
[0, 1" and P*; [0,1]" = R™ are permutation invariant and Q" satisfies

(1) (vxe[0,1]7) iQf(x)sl.

i=1

In the event that n potential buyers participate in the seller’s mechanism
{(Q", P")}ic,, Q" gives the vector of probabilities that the participating agents
receive the item, and (1) dictates that these probabilities must sum to no more
than unity because the seller has one unit. These prababilities are functions of
the vector of reports. An actiorn for a seller in period ¢ is a direct anonymous
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mechanism.” A strategy for a seller is a mapping from histories into the set of
probability distributions over direct anonymous mechanisms in each period of
the game. History will not play much of a role in the analysis because in a
subform consistent equilibrium, history affects agents’ behaviors only as it
affects the data of the subform that remains to be played. The only relevant
data on the subforms are the number of sellers and the distribution of buver
types, which are not affected by deviations by a single seller.

If a seller receives the payments p, in period ¢ and then sells the good or is
removed in period T, the seller’s utility is Z7_,8'p,. If a buyer makes payments
y, in period ¢ and then purchases in period T, and has value x, the buyer’s
utility is 87x — )23;05’ ¥,. A buyer who is removed in period T prior to purchase
obtains utility —LI_,8'y,. The discount factor, 3, is less than one.

3. EQUILIBREUM WITHIN A PERIOD

A symmetric CSCE can be identified by equilibria within a period in the
following way. Suppose that a given mechanism m* is proposed as a candidate
for an equilibrium within a period. Let » be any other mechanism, and suppose
one seller deviates and plays this other mechanism. Given these mechanisms,
and the profits from being a buyer in future periods, the buyers must make
optimal participation choices and reports to the mechanism in which they
choose to participate, should they choose to participate in any mechanism.
These participation choices and reporting rules can be considered to be an
“equilibrium for the buyers.” Once the behavior of the buyers is established, the
profitability of the deviation to the deviant can be assessed, bearing in mind that
a CSCE presumes that the seller ignores his influence on the profits offered to
buyers by other sellers. A symmetric CSCE in a period is a mechanism in which
no deviatian is profitable. Thus, our analysis starts with an analysis of the buyer
behavior, and characterizes the reaction of buyers to a given seller’s deviation,
and then proceeds to the payoff to the deviating seller. A useful notion in this
regard is a CSCE best response, which is a mechanism that maximizes a deviant
seller’s expected profits, given a candidate equilibrium mechanism and the
CSCE assumptions.

By Remark 1, there will be a well defined function =}, , which provides the
value of being a buyer in the period ¢ + 1; that is, a buyer with value x will

? From a Revelation Principle perspective, the set of mechanisms is too small, because buyers are
informed not only abaut their own value, but also about the mechanisms employed by other sellers,
and a seller could design a mechanism to ask buyers to report on the mechanisms offered by other
sellers in the current periad. In an earlier draft of this paper, McAfee (1988), it is argued that pure
strategy equilibria in direct mechanisms are equilibria to the game with larger strategy spaces for
sellers. This accurs because a deviating seller believes that other sellers are not deviating, and thus

" the deviating seller does not expect to learn anything from asking buyers about the mechanisms
employed by other sellers. However, the expansion of the sellers’ strategy space could introduce
athet equilibria. It is also quite difficult to define the larger sirategy space, since mechanisms must
map the set of mechanisms into outcomes, leading to an infinite regress.
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expect utility 87, ,(x) if he does not obtain the good in period 12 In the
current period, suppose that m, — 1 sellers are using one mechanism and the
remaining seller, say seller 1, is using a second mechanism, and there are n,
buyers. I will look for symmetric CSCE for buyer behavior, that is, all buyers of
a given type employ the same, possibly mixed, strategy. I suppose that buyers’
valuations are independently and identically distributed in period ¢ according to
the distribution function &, which has density g.

If all buyers of the same type employ the same strategy in period ¢, there will
be a function 8, so that 8(x) is the probability that a buyer with valuation x
participates in seller 1’s mechanism in period . Because 8(x) is a probability:

(2) (Vx) 8(x)e]0,1].

In keeping with symmetry, suppose that buyers of type x go to any seller other
than I with probability (1 — 8(x))/(m, — 1), provided that the candidate equilib-
rium mechanisms offer buyers nonnegative rents when they participate alone.’
The function 8 is, of course, a feature of the equilibrium, in that it is
determined by buyer maximization. Before proceeding with this maximization, it
is useful to introduce reduced form mechanisms.

A reduced form mechanism is a pair of functions (g, p), ¢: [0,1] —= {0, 1] and
p: [0,1] = R so that g{y) is a buyer’s probability of obtaining the item if he
reports a value of y and p(y) is the expected payment in this circumstance. The
assumption that sellers use anonymous mechanisms insures that the reduced
form mechanisms don’t depend on the buyers' identities. Reduced form mecha-
nisms incorporate two subtleties in this environment. First, the distribution of
the number of buyers participating as well as the distribution of types for those
buyers who do participate both depend on the buyers’ participation strategies,
which are endogenous. In principle, these distributions are determined by the
function 8, However, in accounting for those buyers who do not participate at
all, it is convenient to introduce the notation z{Q} for the probability that a
buyer does not go to seller i. The relation between z{0) and the function & is
explained below in condition (12). If seller 1 uses mechanism {(Q,,, P,)}<, then
g is given by

(3) q(y) =E_Q(y,x_;)
n—1 " _1
-2 (" a0

k=0 k

xfol - j:Qk+1(Y=x11""xk)6(x1)g(x1)
X oo 8 ) g (xi) dey o dxy

3 The discounting embodied in & incorporates the risk of exogenous termination by nature; that
is, & includes both the probability that the agent is removed and the agent's pure time preference.

Provided that the agent prefers current consumption aver future consumption, we have § < o,
The case where buyers do not participate in the nondeviant mechanisms is analogous.
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In a similar way, if the other m, —1 sellers use the mechanism {((Q}, P} W,
then g* is given by:

(4) a*(y) =E_jQ*(y,x_;)

e R AT O R
Hkgo( k )(l_mr*l)

1-8(x,)

Lo Lo i el

Xf(] ankH(_\’axl,---axk) m,— 1 g(x;)
e g(x,ydx, - dx,.

t

This is subtle because the value of @ itself is an equilibrium value that
depends on profits offered by the sellers, which in turn are characterized in
terms of the reduced form equations.

The second subtlety involves the incentive constraints. Without loss of gener-
ality, the deviator’s mechanism may be assumed to be incentive compatible. This
occurs because if the deviator offers a mechanism {(Q,,, P,)}?-,, which leads to
buyer participation of # and a reporting rule to the mechanism of y, so that a
type x buyer reparts y(x), then the mechanism which offers the composition of
((Q,, P)Y, with y,'° will have an equilibrium with the same participation
function 6 and honest reports. However, even if the other mechanisms are
incentive compatible in equilibrium, the dewviation of one seller will generally
destroy the incentive compatibility of the other mechanism, because the buyers
know that the anticipated equilibrium participation rate did not arise and adjust
their reports accordingly. Let yv* refer to the equilibrium reporting rule for the
other nondeviating mechanisms. While a deviation may alter the reporting used
at other mechanisms, CSCE condition (i) posits that a deviating seller neglects
the effect of his mechanism choice on profits available to buyers participating in
other sellers’ mechanisms.

Let g(¥),(¢*(y)) be the probability that a buyer reporting the value y obtains
the item at seller 1 {or any other seller). Variables without superscript * will
refer to seller 1 in the current period ¢, while variables with the superscript *
will refer to other sellers in the current period ¢, and subsequently to steady
state values. Future values will be subscripted with ¢ + 1. A buyer who partici-
pates in one of the mechanisms offered by sellers other than 1 obtains an
expected utility of

(5) m(x) = max xq*(y) +3mia () (L —a*(y)) —E_ P*(y, %),

where FE_.P* is the expected payment given participation in the seller’s
" mechanism, defined analogously to E_,Q* in (4). Similarly, if this buyer

Y The composition replaces x; with y(x,).
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participates in seller 1’s mechanism, the buyer expects profits of
(6) Wr(x) = m}?‘qu(y) + Sﬁil(x)(l *q(_v)) —-E_P(y, x—i)‘

By the envelope theorem,
(7) m(x) =q(x) +8m(x)(1 -a(x)),
(8) ' (x) =g (y*(x)) + i (x)(1 — ¢*(¥*(x))).

Buyers choose the mechanism that offers the highest rents. Thus, CSCE
requires

| 0 if m(x) <mr(x),
O 0= x> (),

to hold; that is, buyers go to seller 1 if seller 1 is offering higher profits, go to
another seller if seller 1 is offering smaller profits. If 7,(x)=7F(x), then a
buyer with value x can go to seller 1 with any probability 6(x)<10,11. It is
important to bear in mind that 7, and 7} depend on 4. But if (9) holds, no
buyer can gain using a different strategy in period ¢.

In view of (8), a natural assumption on m}, | is

(10)  (¥x) O<m¥y(x) <L,

which will be satisfied provided that 7¥, | is determined by mechanisms in the
same way that ) is, since 7*(x) is a convex combination of 1 and ] (x).
Inequality (10) yields

(1) (Yx) 0<dmy(x) <m(x) <1.

I now turn to the optimization problem of seller 1 when all other sellers are
using a fixed mechanism ((QF, P¥N7,. In a CSCE, seller 1 takes his future
profits as a seller, and the buyver profits, both in the future and in the present
period, as fixed, although he allows for the endogeneity of the participation
frequency. I denote the value of being a seller in the period ¢ + 1 by §®*, Given
the reduced form mechanisms (q, p)} and (g*, p*) for seller 1 and the other
sellers respectively, , and =} satisfy (5)—(8) and @ satisfies (2) and (9).

The function z given by:

(12) z(x)=1—fx18(s)g(s)ds

will play an important role in the analysis. Note that z(x) is the probability that
a given buver either does not go to seller 1 or has a value less than x. In
particular, 1 — z(0) is the probability that a buyer goes to seller 1 from seller 1's
perspective, that is, not knowing the buyer’s value. Similarly, z(0)/(m,— 1) is
the probability a buyer goes to seller i = 2.

Because the seller has at most one unit to sell, there is a restriction on the
reduced form probability g of receiving the good that emerges from (1) and (3).
This restriction has been analyzed by Matthews (1984) and Border (1989} and is
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known as the implementability condition.!! It is given by:
1 1 R
(13)  (vxe[0,1]) [ g(s)z'(s)ds < —(1-2(x)").
X 4

The implementability condition captures the restriction that the seller has a
single unit to sell. For example, the seller cannot promise to give the good with
certainty to any potential buyer who reports a value in the interval { y, 1] unless
no buyers are expected from this interval, that is, 8 is zero a.e. on this interval,
This is because such a plan to set g =1 would imply with positive probability
that two agents with values in excess of y participate, and both expect the item
with certainty, which is not feasible.

The implementability condition (13} is satisfied with equality when g =z%"%
This means that an agent receives the good if and only if no other agent with a
higher value participates in the mechanism. This is tantamount to saying the
seller holds an auction, because an auction awards the good to the highest value
participant, provided that value exceeds a reserve price r.'

Using (12) and (6), I may express seller 1’s expected profits as:

(14) ¢=8<ﬁ*+n,f01(p(x)~8@*q(x))6(x)g(x)dx

=30% +n, [ [x9(x) + 5t (2)(1 - a(2)
—m,(x) — 8P* g(x)]| 2’ (x) dx
=50% +n, [ [(x~50% — buf, (x))a(x)
]

+37T;*+1(x) - "'Tr(x)]z,(x) dax.
Seller 1 chooses his mechanism to maximize (14) subject to (2), (6), (7}, (9),
and (13). It is useful to introduce the notation:

' (x) —dmi(x) |
(15)  z(x)= : :
1_877:-:—1(‘!)

(16) r*=sup{r: w¥(r) =0}, and,

(17) rr*+1=sup[r:77f+1(r)=0}’

for ease in stating the theorem. To interpret z,, consider a buyer who can go
either to our seller or to another seller, and the second seller offers a probability
g*(y*(x)) that a buyer with valuation x receives the item. Also suppose that
the value of not purchasing from this second seller is 8o}, {x). Solving equation
(8) for ¢* shows that g* =24« !, that is, zj<~" is the probability that a buyer

! Roth papers presume that the mechanism treats two buyers with the same valuation symmetri-
cally, that is, the mechanism is anonymous. This is the motivation for restricting the seller to an
aponymous mechanism. The fact that ¢4 is nondecreasing, a consequence of incentive compatibility
~ and (&), is required to obtain {13) from Matthews’ result. There is an analogous condition for ¢*
Whiﬁh plays no raole in the analysis.

Because of risk neutrality, many different mechanisms produce the same equilibrium allocatian
and expected profits. We refer to the seller as holding an auction when a standard auction will
implement the allocation of the good and the expected payofls.
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with valuation x receives the good if he participates in the outside option and
not in seller 1’s mechanism. Bear in mind that while 7} depends on the
equilibrium values y* and 8, which in turn depend on seller 1’s mechanism, it is
assumed by CSCE condition (i) that seller 1 neglects this dependence.

TuroreM 1: Suppose (10) holds, and assume
(18)  dP*=r*<riy,
(19) a(y=7}(1)=1, and
(20) (vxe[r*,1]) 0<z,(x)<g(x).

Then, any mechanism which maximizes (14) subject to (2),(6), (,(9),(13) and the
CSCE conditions satisfies

21y  w=wf,
(22) z=2,, and

n,—1
(23) (Yxelr*1]}g(x) =z,(x)" .
Moreover, the CSCE best response can be implemented using a second price
auction with reserve price of r*.

Proor: Observe that
(24) @gaqb*+n,jﬂl[(x—a<p*—317;k+1(x))q(x)
+8my (x) —mi(x)] 2 (x) dx
<rem [ (e rt bt (1))a(x)
+8m, (x) = mf(x)] 2'(x) dx
=r*+n,fri(1—Sqr;“;l(x))fq(S)z’(s)ds
— (8w (x) - m(x))(1 —2(x)) &
<r o (1 - o) (1= 2(0)")
— (8w () — (%)) (1 —2(x)) dx
gr*+n£j:(1-—81'rj";1(x)):—r(l—za(x)n‘)

— (Bt (x) = (x))(L — 2(x)) dx.

The first line follows from (9), since 7w¥(x) > 7 (x) implies z'(x) = #(x)glx)
= 0. The second line follows form (11) and (16)-(18). The equality follows from
integration by parts, noting 2(1) = 1. The penultimate line uses (13) and {11),
and the last inequality maximizes pointwise over z to obtain z=2,.
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The last line of (24} provides an upper bound on the seller’s profits. This
upper bound is achieved when (21)—(23) hold, and (13) holds with equality. The
condition required for (13) to hold with equality, given (23), is z,(1) = 1, or (19).

Morcover, (21)-(23) are feasible if they satisfy (2) and (9). By (21),(9) is
vacuous. Inequality (20) is a restatement of (2), since z'(x) = #(x)g(x). Thus,
(18)—(20) insure that (21)-(23) solve the seller’s maximization problem.

To see that an auction with reserve r* maximizes the seller’s revenue, note
that (23) insures that any buyer with value x participating in the seller’s
mechanism obtains the good with prabability equal to 2(x)“~!, which is the
probability that no higher value type participates in the mechanism. Thus, the
highest value participant receives the item, and one implementation is for
the seller to hold an auction. The reserve price is just the highest zero profit
valuation, r*. Q.ED.

Theorem 1 admits a wide class of profit functions for which it is a CSCE best
response for the seller to hold an auction, that is, sell to the highest value buyer
participating in the mechanism. Intuitively, the reason is as follows. The
constraint (19) forces, by (15), that z,(1)=1. Therefore, integrating (20),
Gx) <z (x)< 1. By (15), 1z w*(x) 2 én¥ (x) + Gx) (1 - dmy (x)).
When combined with (18), this bounds 7* below sufficiently that the constraint
m{(x) > w*(x) for 8(x)> 0 binds everywhere. This, when combined with (11),
insures that the seller wishes to sell to the highest value type, since (11) insures
that the seller’s payoff is nondecreasing in the buyer’s valuation. But selling to
the highest valuation buyer amounts to holding an auction.

Theorem 1 does not require a hazard rate assumption on the distribution of
buyer values, which is required for the standard monopoly auction result. The
reason for this difference concerns the exogeneity of profits in Theorem 1. In
the standard result, the use of the hazard rate is ta prevent the seller from
attempting to reduce buyer profits for all high type buyers by reducing the
probability that a given type buyer obtains the item. Consider a buyer with
valuation x. In the standard result, reducing the profits of a type x buyer, by
reducing g{(x), reduces the seller’s payoff if the type x buyer appears, with
density g(x), but it reduces profits of all higher type buyers, who appear with
probability 1 — G(x). This illustrates why an assumption on (1 - G(x))/g(x) is
useful in the standard result, In contrast, the seller is explicitly prohibited from
reducing buyer profits in Theorem 1, which intuitively is why a hazard rate
assumption plays no role.

I will now show that auctians are the only mechanism that can be used in a
symmetric CSCE. In fact, a condition called self-replication, which is weaker
than symmetry, is sufficient to guarantee that all sellers use auctions. A profit
function 7* is said to be self-replicating if the best response of a seller to this
profit function, that is, the mechanism which maximizes (14) subject to
(2),(6),(7,(9),(13) and the CSCE conditions, induces expected profits for the
participating buyers of 7 = 7*, and if 8(x) € (0,1) for all x such that #*(x) > 0.
Self-replication of the induced profits is necessary for a mechanism to be part of
a symmetric equilibrium in mechanisms, because the mechanisms must induce
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the same profits for the bidders, and share the bidders equally, in order to
comprise a symmetric equilibrium. Self-replication is not sufficient to produce a
symmetric equilibrium, because it does not require 8 = 1 /m, nor does it require
that the sellers use the same mechanism to induce those profits. The next result
shows that, in this environment, the only self-replicating profit functions are
those induced by auctions.

Tueorem 2: If r* <r¥ | and (10) holds, then the only self-replicating profit
functions in any CSCE are those induced by auctions with reserve price r* = SP*.

Proor: Suppose * is self-replicating. By (7),
mf(x) =m(x) =q(x) +8m,(x)(1 - a(x))-
By (15), g(x) =z (x)" L. Thus, from (14),

@ = 5+ +n,f01[(x - 5@* — 57, (x))a(x)

+8W:+l(x) T, (x)]z (x) dx.
Now x < r* implies g{(x) =0 by (8) and (16). If r* >8P, then the seller can
increase @ by setting g(x) >0 for x € (3P*, r*). If r* <8P*, then the seller
can increase @ by setting g{x)=0 for x € (r*, 8P*). Thus self-replication
implies that r* = §&*. Therefore
d=r*tn, [ [(x=r=bm, (x))a(x)
+8mk, (x) —mr(x)] 2'(x) dx
1
=r*+nf (1 —S'Jr:",:l(x))f q(s)z'(s) ds
_(311'{_'_1(1) m'(x))(l—z(x))dx

=r*+n,j:i(1—31-r,+l(x))
x{[l2a(s 7 2 (0) =2, 71 - 2()) |
—r* +n(n,~ 1)[ (1 -7 (%))
(1261 E 210 - 2(0) )

The constraint 8 € (0, 1) insuxes that 0 < z’(x) < g{x) does not bind. Therefore,
the seller will maximize @ by minimizing z(x), and the feasibility constraint (13)
binds everywhere. This forces the seller to hold an auction. O.ED.

Self-replication is a necessary condition for symmetry. If the profits * are
determined by other sellers using some mechanism, and the remaining seller
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finds the same mechanism a best respense, then the induced profits should be
self-replicating. The fact that each seller offers the same mechanism guarantees
the induced profits are the same across sellers, and each seller will share the
agents equally, so 8(x) < (0,1). Theorem 2 thus has the interpretation that the
only symmetric CSCEs among mechanisms involve auction mechanisms, that is,
mechanisms in which the highest valuation participant obtains the item. Auction
mechanisms are, of course, a large class of mechanisms and what is ultimately
shown by Theorem 2 is that, in symmetric CSCEs, sellers do not randomize, and
sellers use an efficient reserve price, equal to the value of not selling. The major
implications of Theorems 1 and 2 are summarized in the following remark.

Remark 2: Theorem 2 shows that, in any symmetric CSCE, all sellers use
auctions with reserve price »*. Moreaver, auctions with reserve satisfying

(25)  r*=5890*

comprise a CSCE (it is readily verified that (10) and (18)-(20) are satisfied for
the auction case, so that Theorem 1 guarantees it). In this case,”® 68(x)=1/m,
and g*(x) is just the probability that no higher value agent participates in the
seller’s mechanism, which is

s

X ¢

(26)  z(x)"'= (l—fli—g(s)ds) . (1—51931] "

In a steady state, 7} =7}, = «*, and by (8) and (26)
(27)  w¥(x) =2()" T+ s () (1 - 2(x)" 7Y
holds. Since r* is a reserve price,
(28)  w*(r*) =0,
I now turn to the steady state behavior of large economies.

4. THE STEADY STATE CS8CE

Theorems 1 and 2 state that, under the CSCE assumptions that agents
neglect certain strategic repercussions of their actions, an auction is a best
response to a wide class of possible equilibrium candidate mechanisms, which
includes auctions themselves, and that an auction with ¢* = 8@* is the only
candidate for a symmeftric CSCE. This section will examine the steady state
behavior of large economies of sellers holding auctions.

There are two independent uses of examining large economies. First the
assumption that sellers neglect their own effect on buyer profits is unreascnable

Ywe are selecting the symmetric buyer participation equilibrium when sellers use identical
strategies. Generally there will be other buyer participation equilibria. These other equilibria do not
- appear to lead to symmetric equilibria for sellers. The difficulty appears to be that an asymmetric
buyer participation equilibrium tends to induce sellers to try to extract more surplus from the buyers
than other sellers are extracting, because it is more costly to go to alterpative sellers, as the buyers
are not indifferent in asymmetric equiljbria,
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in the finite economy. However, as the economy grows, the ability of a single
seller to affect profits available at other sellers’ mechanisms goes to zero.
Second, the equations of motion of the finite economy are quite complex,
because of the variability of the types of buyers, and thus the optimal reserve
price will typically be random. This randomness vanishes in the limit.

There has been extensive discussion in the bargaining literature concerning
the proper way to define limit economies, and various technical difficulties can
arise. Most of the difficulties concern the existence and properties of various
matching processes with infinitely many agents. In particular, the strategy of a
buyer, to randomize equally over the m sellers, does not have a well-defined
limit strategy as m diverges. To avoid these difficulties, I will consider first the
situation where finitely many buyers and sellers enter the economy in each
period. The matching process then merely involves buyers randomizing over the
stock of sellers, and buyers (and sellers) are removed either by buying (selling)
or by the exogenous removal process. As the number of buyers and sellers is
increased, the stochastic process governing the number of buyers and sellers
converges to a deterministic process. This pracess, in turn, itself converges to a
unique steady state of the distribution of buyer types. Thus, the problems of
infinite matching processes are avoided because only the limit of a well-defined
finite process is considered.

It should be stressed, however, that a CSCE does not involve optimal seller
behavior in the finite environment, because any one seller can affect the buyer’s
profits at other sellers. In addition, in the finite environment, history will
generally be relevant, because, for instance, a seller who fails to sell for a long
period of time will deduce that the buyers in the system have unusually low
valuations, and hence the seller will wish to lower his reserve price. In the limit
as the number of agents diverges, however, there will exist a stationary distribu-
tion of buyer types, and such effects do not arise.

The concept of a large economy steady state will be formalized below, and
involves two elements. First, I examine the equations of motion, governing the
populations of buyers and sellers, of a large economy. In principle, these
equations could be computed for any sequence of reserve prices employed by
the sellers. However, only the case of a constant reserve price will be examined.
In the limit, these equations of motion converge to deterministic equations, and
these equations have a unique steady state. This provides a mapping from
reserve prices ta limiting steady state populations. The second element in the

" The most that buyer profits can be lowered occurs when a seller refuses to sell. Increasing
buyer profits does not benefit the seller, and the only use of the invariance of buyer profits is in
insuring that the seller cannot lower «*{x), which is used in the first line of (24). At most, a
deviating seller can teduce the profits available at other sellers by not selling, This has the effect of
reducing the number of seliers by one. In a steady state, the effect on the profits of buyers is of
order 1 /m, where m is the number of sellers, and the number of buyers is kept proportional to the
number of sellers. This demonstrates that, as the number of sellers grows, holding proportional the
number of buyers, the effect any one seller can have on buyer profits goes to zero at rate 1/m.

13 See Gale (1986).
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large economy steady state requires the sellers to be optimizing. By Remark 2,
this amounts to the imposition of equation (253).

Cansider a sequence of time periods ¢ =0,1,2... . In each time period ¢, m,
sellers hold auctions with reserve price r*. There are n, buyers, and the
population of buyers at time ¢ may be viewed as independent draws from the
c.d.f. G,, which has a continuous density g,. Buyers randomize aver sellers; that
is, a given buyer participates in seller {’s auction with probability 1/m,.

A seller sells provided he obtains a buyer with valuation exceeding the reserve
price. Thus, in any one period ¢, a seller fails to sell with probability (1 —
(L/m, )1 — G(r* M), and aotherwise sells. It follows that the expected value of
m,, Is:

e

1
) Em=am|l- ——(1-G(r*))| +S,
4

since (1 — (1/m, X1 — G(r* )" do not sell by auction, and « of these survive
the exogenous termination, and then § new sellers enter.

For buyers with values less than the reserve price #*, no exit occurs via
auction. Thus '
(30) En, G, (x)=an,G,(x) +bSF(x) forx<r*,

A buyer with value vy > r* wins an auction with probability (1 = (1/m )1 -
G yM" 1 Thus, taking expectations over values y >x, buyers with values
randomly drawn subject ta exceeding x win auctions with probability:

T og(y)

1 1 e
I I O
- n{l - G,(x))

Otherwise, the buyer remains in the stock, still with a value in excess of x. By
(31), therefore, for x > r*,

(32) Enr+1(1 - Gr+1(x))

1—(1—%(1—(},(;;)))"’].

!

=an,(1-G,(x)){1-

n(l~G(x))

x(l - (1 — %(1 —Gt(x)))n‘”

1 "
=an,(1-G,(x)) —am,[l - (1 - -”Z(l - Gr(.r))) l

+bS(1 - F(x)).

+bS(1 - F(x))
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Introduce the notation

n

(33)  wlx)=—(1-Glx)),
t
m

(34) 0; = _S,_ y and
(35) B, =um(r*).
Equations (33)—(35) permits us to rewrite (29) and (32) to yield:
(36) EO}+1=‘10}(1_&) +1 > ace P +1,

¢ Sow

p(x)

t

(37) Eat—t—u'-”'ML(x)=aa:#:(x)_aar[1'_ (1'_ ) ]+b(1_—F(x))

o @ (x) —ag,(1— e ) +b(1 = F(x).

As S gets large, both m, and n (1 — G,(x)) approach binomials, and thus their
variance is linear in S. As a result, g, and u,(x) converge almost surely, and in
the limit, the expectation operator may be dropped from (36) and (37).!% This
gives the dynamic equations governing the numbers of agents as a proportion of
the size of an entering cohort of sellers. 1 now show that there is a unique
globally stable steady state.

Lemnma 3: The process (36)—(37) is globally dynamically stable, with (i, a,, 8,)
- {u, o, B) satisfying .

(38) o=(1-ae?) ",

b(1-F(r*))
(39) ﬁ=1+w, and
b{(1-F(x
(40) (1—a),u(x)+os(1—e_”(x))=%()).

Moreover, (38)-(40) admit exactly one solution.

The Proof is contained in the Appendix, Part II.

Lemma 3 demonstrates that, for any given reserve price r*, there is an
associated unique steady state distribution of buyer types G and a unique ratio
8 giving the number of -active buyers, i.e. those with values exceeding r*, to
sellers. To complete the construction of the steady state CSCE, we need find an
r* which is a best response to . By Remark 2, we need to know only the
limiting value of @* in the steady state. This is constructed using limiting values
. of equations (14), (26), and (27) for the finite case.

I define a large economy steady state CSCE to be a sextuple
(r*, 1,7, d, 8, o) as follows. First, p(x), A, and o are the limiting values, as

1 A derivatian is provided in part I of the Appendix.
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diverges, of the number of buyers with values in excess of x per seller, the
number of buyers with values in excess of #* per seller, and the number of
sellers in the population per entering seller, respectively. Second, 7* and @ are
the limiting values of the buyer profits and seller profits given in (27) and (14)
respectively, where z is given its limiting value. Third, equation (25), which
insures the auctions are a best response, holds.

Consider again the large finite case, so that there are m, sellers and n,
buyers, with values drawn from the distribution function G, present in period z.
For a buyer with value x > r*, the probability of winning in the current period,
when all sellers employ auctions, is, by (26) and (33),

1-6G(x)

n,—1
" e'_lu-(x)‘
m.f

(41)  z(x)" "= (1

Thus, by (27), at the steady state given in Lemma 3,
e (%)

1-8(1—e )"

(42) lim 7w*(x) =
=

Equation (42) vields

(43) (1=8)ym*(x)=(1—-8m*(x))e #).

If all sellers employ second price auctions with reserve r* in all periods, and
the number of sellers and the distribution of buyers satisfies the steady state
given in Lemma 3, then a seller’s present value of profits is given by
(#4) (¥ =reanf [(x-r* - om (1)) z,(x)" 7

—(1-8)m*(x)| z(x) dx
>r¥+ fl[(x — ¥ —Fr¥(x))e )
= (1= 8)ym* ()] (—u(x)) dx
=r* 4 (1=r* = dr*(1) = [ (1-67(x))e 0 d

~(1=8) [ 7 (x)u(x) ds
= 1-8m*(1) - j:(l — &) (x) dx
~(1-8) [ m(x)u(x) de

=1 [ ()L (1= 8)u(x)] dv

e N1+ (1 - 8)u(x))
o 1—8+ e+

=1
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The first line restates (14), the second substitutes (41), that is, substituting
e ) for z{x)*~' and —u/(x) for nz'(x), the third integrates by parts, the
fourth line employs (43), the fifth collects terms, and the sixth substitutes (42).

In the large economy, a seller who deviates to a mechanism other than the
auction with reserve price »* takes * as given, and 7* is constant over time at
the steady state, which is why the time subscript has been suppressed. Note that
T =a* =7}, satisfies equations (18)—(20), provided r* = §¢*. Thus, by Theo-
rem 1, a seller cannot gain by deviating if the expected present value of being a
seller in the subsequent period, which is 8®(r*), equals r*. That is, if (23),
(38)-(40), (42}, and (44) all simultaneously hold, then (r* u, 7w*, &®,8,0) is a
large economy steady state CSCE, with all sellers holding auctions with reserve
price #*, and buyers mixing symmetrically over sellers.

ThueoreMm 4: There is a unique value r* so that (25), (38)-(40), (42), and (44)
are jointly satisfied, and ¥* €10, §). That is, there is a unique large economy steady
state CSCE.

The proof is straightforward and is in part IV of the Appendix.

Theorem 4 shows that, in large economies with exogenous entry by buyers
and sellers, there is an equilibrium where sellers hold auctions and buyers
randomize over which auction they participate in. Sellers cannot unilaterally do
better than holding an auction. In addition, each seller posts a reserve price
equal to the value of not selling, in contrast to the usual monopoly result, in
which the seller’s reserve exceeds the value of not selling. The value of not
selling in this environment is merely the present value of being a seller in the
next period. In the usual monopoly model, the seller gains from the inefficient
reserve price by driving down profits, In large economies, it is impossible for a
seller ta drive down the buyers’ profits, because the set of alternatives available
to the buyers is too large.

5. COMPARATIVE STATICS

In this environment, it is possible to increase the number of buyers per seller
by increasing b, increase the exogenous removal rate 1 — a, and increase the
discount rate 8. The latter two experiments are not available in the standard
monopoly auction model. Besides assessing the effect on the reserve price r*,
the effect on the ratio 8 of active buyers to sellers is also of interest. Derivations
of the claims in this section are provided in part V of the Appendix.

Not surprisingly, increasing the number of entering buyers per seller, b,
increases both the ratio of active buyers to sellers 8 and the equilibrium reserve
price r*. This is in contrast to the usual monopoly model, however, where the
number of buyers per seller does not affect the reserve price.

Increasing the exogenous removal rate 1 — & has a complicated effect on r*.
However, it can be shown that, if b < 1, then increasing a decreases r*. The
effect is as follows. If b < 1, that is, there are fewer buyers entering than sellers,
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then increasing the proportion that survive each period tends to decrease the
number of buyers per seller in the stock. The excess sellers tend to accumnulate,
and this disadvantages the sellers, and competition lowers their payoffs and
hence the reserve price.

If b> 1, the situation is less clear. Suppose that »(1 — F(#*)) > 1, that is,
B >1 by Lemma 4. Then the number of active buyers per seller exceeds 1, and
increasing & tends to further increase the number of active buyers per seller.
Counting this effect is a change in the equilibrium distribution of buyer
valuations. High value buyers tend to purchase quickly, and thus the accumula-
tion of buyers is mostly of low value buyers, tending to reduce seller payoffs.
Thus the extra active buyers per seller may not increase enough to outweigh the
reduction in average values. However, I have not found an example.

When § is increased, r* rises and g falls. This is not surprising. As & rises,
the future becomes more valuable to the seller, and r* is merely the present
value of being a seller in the future, so it must rise. Since r* rises, there are
fewer active buyers per seller entering, and g falls.

As a final comparative static exercise, consider the case when « = 8, that is,
all discounting is due to the risk of exogenous termination. Since ¥ tends to
decrease in «, at [east if (1 — F(+*)) < 1, and increase in 8, the effect on #* is
unclear. For uniform F, this case has a simple form, derived in the Appendix.
Figures 1 and 2 illustrate the effect of changing b on r* and 8, while Figures 3
and 4 illustrate the effect of changing « = §.

As & goes to zero, ¥* goes to zero as well, because the present value of being
a seller goes to zero. However, @ = r* /§ does not vanish, and indeed,

lim @=b"'b-2+et(b+2)].

=80

1.4

G+

Figure L.—r varying with b, o = & = 0,999,
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Fioure 2.—f varying with b, o = § = 0.999.

As o = § goes to one, neither sellers nor buyers are lost through attrition, but
only though sales and purchases. As a result, either sellers, if b < 1, or buyers, if
b>1, accumulate. If b <1, and sellers accumulate, #* is driven to zero,
because even though sellers are becoming more patient, they are becoming
more numerous, and the competition forces the price down.

If > 1, buyers tend to accumulate as o =8 — 1, driving r* up. In addition,
as a gets close to 1, and if b is moderately large (e.g. over 5), 8 becomes
approximately equal to b+ 1, which is an upper bound for 8, and r* ap-
proaches (b — 1) /b, and is exactly equal to this in the limit at & = 1. Thus, when
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Fiaure 3.—r varying with 8, @ =8, &6 = 1.
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FiGure 4.—f8 varying with &, with & =48, 5= 1.

exogenous termination and discounting are eliminated from the model, the
reserve price is zero if there are at [east as many sellers as buyers entering, and
otherwise it is one minus the ratio of sellers to buyers.!”

The experiment of asking whether the reserve price is efficient, that is, does
the reserve price maximize the sum of buver and seller utilities, is easy to pose
in this model. Consider an entering cohort. The present value of utility for this
cohort is, per seller,

v =B(r*) +bfriqr*(x)f(x) dr.

Thus, one can ask whether the reserve price maximizes the present value of
each cohort, since this is a constant.

As it turns out, the equilibrium does maximize the present value of a cohort if
a =48, and otherwise may not. In particular, if the equilibriumr would have
A = 1, which is possible, then the reserve price is too low if « > §; that is, if all
present and future sellers increased their reserve price, then once the steady
state is reached, entering cohorts would enjoy higher utility.

One might intuitively expect the reserve price to be too low. The equilibrium
reserve equals the value of being a seller in the next period. The first best
reserve should equal the social value of postponing sale and having an extra
good in the next period, which is the sum of the value of being a seller in the
next period and the additional value accruing to buyers not extracted by the

7 Interestingly, this is the outcome which a naive supply and demand analysis yields. Flow supply
equals flow demand when 8 = 1, and for the uniform distribution apd a =& = 1, this occurs when
r¥=1-b""%
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seller. Since the latter is positive, one anticipates that reserve prices are too low,
and this makes it somewhat mysterious why they are efficient if @ = §.'8

6. CONCLUSION

This paper fails to address three very important aspects of the problem of
mechanism design in the presence of competing mechanisms. First, a change in
arne seller's mechanism will tend to alter the distribution of buyers participating
in the other mechanisms, thereby altering the buyers’ expected payoffs from the
other mechanisms. This effect was finessed by appealing to a limit economy.
Second, the analysis focuses exclusively on steady states, and contributes noth-
ing toward an analysis of mechanism design off the steady state. Third, sellers
do not typically design auctions, but rather auctions are designed by third
parties not present in this model.

Consider first the case of » buyers and m sellers in a one shot game. The
sellers choose mechanisms, then the buyers choose which mechanism to partici-
pate in, the mechanisms are operated, and the game ends. It can be readily
shown that, in such an environment, it is not an equilibrium for sellers to hold
auctions with the same reserve price. Thus, the result of this paper is an
equilibrium for a limit economy that will fail in all finite economies. In this
regard, the results presented here can be viewed as the mechanism design
analog to the theory- of perfect competition. Obviously, a solution to the
competing mechanism problem with finitely many, but more than ane, mecha-
nism designers would be of interest,

Even given the large economy assumption, the dynamics associated with the
evolution of the system over time is also important, although there is a trivial
special case (@ = 1) where no dynamics arise. The problem with dynamics is
basically restricted to the lack of an analog of Theorem 1 when the reserve price
varies with time. Note that Theorem 1 permits the bidder’s expected profits to
vary. In addition, the dynamic equations for 8, GG, n, and m are reasonably
straightforward, so long as r* is constant. However, once the environment is
allowed to vary over time, there is reason to expect the equilibrium reserve price
to vary. This, in turn, will render Theorem 1 inapplicable, although, if the
reserve prices rise over time, Theorem 1 still applies. Equations (30), (36), and
(37) can be used to characterize the evolution of the buyer types, with (25)
providing reserve prices. There is still more work to be done, however, to
establish what conditions on the initial distribution of buyer types u will lead to
reserve prices rising in every period, which is necessary to apply Theorem 1.
Moareover, Theorem 1 sheds no light on the effect of a worsening over time of
conditions for sellers. In any case, an analysis of the dynamics of #*, or of the

" In an early version of this paper (1988) the case of endogenaus entry of buyers was considered,
and the equilibrium reserve price, which satisfied (25), was shown to be inefficiently low, even if
a = 5. The intuition was clearer in that case, because sellers did not consider the effect of their
reserve price on the equilibrium distribution of buyer types and on the entry of buyers.
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equilibrium mechanism, would shed light on this model, and on competing
mechanisms generally.

This paper falls far short of a real theory of equilibrium institutions partly
because it places the design of institutions in the hands of the sellers. A more
satisfactory approach requires explicit modelling of the role of intermediaries,
or auctioners, who compete among each other for both buyers and sellers. Such
a theory faces at least one major abstacle: it is advantageous to bring all the
buyers and sellers together at one intermediary’s location. No matter what the
intermediary’s mechanism looks like, buyers and sellers won't unilaterally devi-
ate from the proposal to all go to a certain location. This observation may
explain the “stickiness” of institution, or may only be an obstacle to a reason-
able formulation of the design and evolution of selling institutions,

In spite of these defects, the model represents an alternative to the models of
price formation based on bargaining, such as Rubinstein and Wolinsky (1985).
Perhaps the most interesting feature of the model is the endogeneity of
the matching process. Although the equilibrium matching process is akin to
Rubinstein and Wolinsky's, sellers have the ability, by lowering reserve prices or
generally making the mechanism more attractive to buyers, to attract more
buvers, and their desire not to do so in equilibrium acts as a constraint on the
system, affecting the determination of prices. Moreaver, the mechanism by
which prices are set is itself an equilibrium phenomenon, in that sellers are not
constrained to hold auctions, but rather choose to, given the decision of other
sellers to sell by auction. This is in contrast to the alternating offer bargaining
model imposed by Rubinstein and Woalinsky, where both the matching technol-
ogy and the transaction mechanism are exogenous.

Dept. of Economics, The University of Texas at Austin, Austiny TX 78712,
USA.

Manuscript received June, 1989; final revision received April, 1993.

APPENDIX
Parr I: Justification for Removing the Expected Value Operator in Equations (36) and (37)

Let 7, be the binomial variable which is 1 if seller { does not sell and is not terminated, that is,
seller { remains in the stock, and () otherwise.

1 - Gr*)y\™
E'r,-=cr(1'—'—'—-—'L(=—=—)~) =aqe P,

my

e
2(1-G.(™)) ) = ale— 2%
-~ 1

fori+j, Enr= al(l -
m

£

H,
m =85+ E'rr-

i=1
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This yields:

Em,, ,=ame 5,

my, 2 n, 2
var(mu-l)ﬂE(Efi') - (EETi)
i=1 i=1

=mErl+m,(m,— 1) Eryr,— mlale™

mn m, + 8
=m(ae™ 8 — ale ) g —41 = °4

Therefare, var{a,, ) < (m, + 5)/482 2025 5 o o,
Since m, /S converges as. as § — =, it follows that »,/5 converges as wel), and thus that m,/»,
converges, as desired.

ParT II: Proof of Lemma 3
Using (36) and (37} with x = r* since 8, = p,(r*),
G 1B = o (B,— 1} +age P +b(1~ F(r* N
=aa (B, 1) +a,., —1+b(1 - F(+*}), or
(B —1) =aa (B, - 1) ~ 1+ 8(1 - F(r*)).
Therefare,
— + —
A (-1 DT
For large ¢, using (36) and {Al),
(A2) T +oae 1T/

where y = (6(1 - F(**))— 1) /(L —a) and = indicates an arbitrarily good approximation, since
oA, — 1) is monotanic in ¢, Note that in (A2),

a(.rH_1

=ae” TVl 4y /o) <ae”t < L
da,

Thus ¢, converges to a value satisfying
(A3) o=(l—ae "7y o (1 —aem?) "

The combination of {A1) and (A3) vield (38) and (39). Moreover, since g, converges, 3, converges to
1+ vy /7. Since ¢, — o, (37) vields (40). To see that (38)-(40) have a unique solution, let

#(P)Y=(1—a)B~ 1)~ (1 ~ae ) b(1-F(r*)) - 1].
Then {38) and (39) combine to show that ¥{g) = 0. Thetefore:
() = (1 —a)b(l - F(r*)) <0,
lim ¥ =,
g (#8)

¥(B) = (1 - a) —ae™#[b(1 - F(r*)) - 1],
¥"(B) = aeP{b(1 — F(+*)) ~1].

Thus,
F(BY=0=¥"(B)}=1-a>0.
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Hence, any extreme point is a minimum and since ¥(0) < 0, there exists a unique solution to
P{A3) =0, as any two solutions would imply a maximuim between them. The uniqueness of o and p
is apparent from (38) and (40), once 3 is uniquely identified. Q.ED.

I will need the following lemma in the proof of Theorem 4 and in part V.

Part III: Lemma A

Lemma A Fix r* and consider the global steady state of Lemma 3.

d
(A4) 5% ash(l - F(r*N 21,
af
(A3) = >0,
a8
(Aﬁ) 5!‘_* <0,
du(x)

(A7) (Yx e (r*,1)) <0.

ar#

Prook ok LEMMa A: It is useful to eliminate & from (38)—(39) and work directly with
(A8) V(o b,r*Y=(1—a)(B—1)- (L —ae Y b(1-F(r*))-1].
B is defined by ¥=0, and at this solution, 3% /38 > 0 from the proof of Lemma 3.

(A9) V= —(A-1)+e B[b(1-F(r*})—1]
- —(ﬂ—l)‘re‘ﬂ%g:—l)
1—e*

—(,3—1)71_0“3_]G Z0as Bl

Thus, we obtain (A4):

£=—Fﬂ%0 as ﬁ%]q

(Al0) ¥, = —(1—ae P)(1 - F(r*)) <0,
and therefore vielding (AS5): (38 /8b) = —(¥,/¥,) > 0. Finally, (A6) and (A7) follow from

aa
(All) qfrx=(1—&€_3)bf(r*)>0=°'é‘r—* <.
From (40), substituting {38} to elimipate o, we obtain (A7)

B
du(x) b1 - F(r*))ae""“gr—*

= <0, E.D.
ar* 1 — @ + e g

(A12)

ParT IV: Proof of Theorem 4
Define

e 4 (1-8 .
(A13) u(r*)=r*—a¢(r*)=r"“‘*(1'f,i R ]
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Let
(1 + (1= 8)w)
4 = ——"¢[0,1}.
AL) )= =7 = elo)
Mote that

(-9 -8u+8(01 -]

—uy2 0
(1-5+35e*)

(A15) y{u)=
Now

»(0) = —6(1 —foly(u(x)) dx) = —5f011 —y(p(x))dx <0 and

w(8) = Sfoly(,u.(x)) dx >0,

To reduce notational clutter, the dependence of p on B is suppressed. Note that, by (40}, u
depends on +* anly through the dependence of g on #*. v is abviously continuous, so a solution to
v(r*} =10 exists in {0, 5). Moreover,

(A16)  v(r*)=1-8y(u(r*)) + aﬁy’(,u(x)) a*;f:) dx > 0,

by (A, {Al14), and {A15). Therefore the solution is unique. Q.ED.
Part V: Comparative Statics Derivations for Section 5
In addition to the functions ¥ and » given in {A8) and (Al13), we shall use

—F(x)

m[(l ~a)}f +a(l - e‘ﬁ)],

{Al17) (1—a)e(x) +a(l —e ) =
which is a consequence of (38)-(40). We have from the proof of Lemma 3 that, at ¥{8) =1,
All o Q

1 — = {.
(R T

V.1—Derivatives with respect to b2 Fram (A17), 2u(x)/4p > 0. Thus, since b does not appear
iy,

] =1—-"r==d?‘* + Uﬂdﬂ

du(x)
ap
By (A1S) and (Al6), dr* and df have the same sign. Mareover,
0= W,ndr* + Wy df + ¥, db.

= v drt+8 [y (4(x)) dxdp.

By (A10), (A11)}, and {A18}, we can conclude that

o0 amd By
'E;- an EE;) .

V.2—Derivatives with respect to o for B < 1: Observing that the function
y—1l+e™
(l-a)y+a(l—e")
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is increasing in y, and u{x)} <8 by (A17) for x = r¥*, we have
w(x) =1+ e #t8) g-1+e7#
(0 —a)a(z) +a(l—a ") I -a)p+a(l-2 )
which implies by (A17}

p(x)—1+e"‘“’s (ﬁ 1+e7#),

F()

which implies that

ulx) = (1= e ™M) - F(, (,e (1-e7%))

dufx)
= = 0.
3¢ |8 canstant 1 -+ ae O
By (A4), with (A17) satisfied:
dul(x dpx du{x) 3
s ) w)B
da r* constant der B3 de

Using (A13) and (Al6),

dux
0=vr~.dr*+5]:y'(_u(x)} ‘L;Er)

which implies dr* /de < 0. Note that »,+ accounts for the effect of changing +* on p.

V.3—Derivatives with respect to 81 0 = Wy df + W, dr*. Thus dB /d5 and dr*/da have oppo-
site signs. We may rewrite v to gbtain

y=r* —5(1 —friv(u(x)) dx)

dxde,

¥ constant

=r*—8(r* +ﬁl—y(ﬂ-(1))d")

gix) _ _
u(x) -1
=(1-8)r*—-8(1 -4 —-——dx
( )?’ ( )f (1_5}ep.(x)+6
Thus, dividing by {1 — &},
e#(:) —J-L(x) -1
Al9 O=¢*—-5§ o
(A19) f (1—5)9-“{”+6

The right-hand side of (A19) is increasging in +* because v is increasing by (A16), and is decreasing
in & (note that by (Al7), u(x) is invariant to 8), so we have dr* /d& > 0 and 48 /48 < 0.
V.4—The special case & = 8 and F(x) =x: From « = § and (38)-(40),

(A2} (1-a)u(x) +a(l - e 5D = b(1 - F(x))(1 - ae™),
which yields

—bf(x W1 —ae™? —b(1 —ae*
M) iy SHONLaeP) | b —ae?)

1 — a4 e+ 1—a +ae #}

Therefore, by (A19),
11— 67591 +u(x))

O=¢*—
- a+aem R

r

=7t e [l 0 )l (1) e
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Multiplying by b(1 — ae™?), and noting that d(2 + e ~*/dx = —e "1 + ), we have:
(A22) 0=b(l—ae ?yr* +ap(x) +e4(2 +;L(x))]|:*
=b(1—we Pp* +af2-g-7P02+8)].
From (39) for x = r*,
(I-—a)fta(l-e P)-b(1-r*}l-ae ?)=0,
or, equivalently,
(A23) b(l—ae ) *=b(l—ae ) - (1 —a)B—a(l -7 P},
Putting (A22) and (A23) together, we abtain
s(AY=b(1—aePy-P+a[l-eA1+8)]=0, and
_ (1-e)p+a(l—e?) =1_l_ (1-a)(B-1)

(A24)  re=1

b(l—ae™?) b b(1—ae™#)
At a=0, s(B)=5— 8, and therefore 8 =b and this gives r* =0.
dp —be B —eTB(l+8)+1

lim — = ~ ¢ 3 -1 —e7B(1+28).

a—i da bae P —1+PBae?
This gives

. r* ar*

lim ¢= lim — = lim -—

a—0 a0 ¢ a0 da

E} 28
-1 (1—&)(ﬂ—])e“ﬁ (1—&)55 (1_‘1)(.&_1){16_'&3

2

= lim - or-ralis

a0 bl —ae™#) b(l—ae"’)ﬁ b(l - ae™F) b(1 ~ ae™#)
b-1 {(h-1)e"% 1 i,

= —p(1-e (1 +2b))

=p [6-2+e7%b+2)].

For the case a — 1, we consider two cases. This case requires some care hecause, at ¢ =8 =1,
s(8) = 0 has multiple solutions if b > 1.
Case [—a=8—>1andb<1: 3(0})=0,and, as a = 1,

s(By=-(1-ae ®(b+8)) < -(I-ae” (1 +8)) = -(1-27P(1+8)) <0.
Thus, as « -+ 1, # - 0. Moreover,
—be P - (14 )+ 1 b

d
lim —ﬁ= lim —

a1l da a1 bae @ — 1+ pae? b-1"
This gives
1 l—a -1
lim r¥=1———— lim L—-—-lg—ﬁ;—-—)—
a—1 ba—rl l1—ae A
ap
11 _(»6_1)"'(1_“}&';
=]1-===lim 2
a=l B e P
= + ———
¢ e T
, 1 1 1 0
b b b
_]_+_
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Case f—a=5—1 and b>1: Note that s(B) takes a maximum at a point f, satisfying
0=ae Pa(b+8,)— 1, and §, is increasing in . Thus the solution to s(8) =0 exceeds 8,, and is
therefore the positive solution to

0=b(1-ePy-p-eP(1+p)+1.

Consequently, by (A24), r* =1 —(1/b).

V.5—The Socially Efficiens Reserve Price: In computing the socially efficient reserve, it is no
longer necessary that the reserve price r equal the discounted value of being a seller. Thus, we have
from (14):

=50+ [ (x= 60~ 5m(x))e™) = (1= 8)m (1) )(~ (1)) d
=5+ (x - 5D~ dm(x))e ), - frl(l — 7' (x))e M) dy
H(1 =) m(u)lf = (1= 8) ' ()(x) e
—8d® +1—8®—m(1) — (r — 5D)eP - frl(l —8)7'(x)dx
~(-8) ())&
=1—(r—dd)e P frlfr'(x)[l +(1—8)u(x)] dr.

This vields

1=re 8= ("w ()1 + (1-8)ulx) dr]
s
1—3e 8
The present value of being an entering buyer is

m,= j;lfr(x}f(x) dx= frl*n"(x)(l — F(x)) d,

where
Pt 1

T S T e D T () 13

Thus the present value of an entering cohort is

V(ir)=9+bm,

=(1- ae-ﬂ)”‘(1 —re P + frl'n-’(x)[b(l ~ F(x)})(1 - Be™™)

St (-] ).

We need the following fact:
L2 —8e Y1 -F(x)) — (0 + (1 - 8)u(x)) _ (a—8)[6(1 - F(x})} —u(x)]‘

A25 1
(A25) 1 =35 +e—wx) a(l— 8 +38e Y

To derive (A25), note that (A20) holds, because the derivation of (37)-(39} did nat require +* =35,
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and thus
1 -8+ 8e 4 p(1 -8 PYL-F(x))-1-(1-8)n(x)
=b(1—ae Y1 - F{x))+ (e —8)be B(1 — F(x))
+(L—8)+ 878 — 1 — (1 -8)plx)
= (1 —ea)ulx) +all —e ) + (@ — §)be A1 —F(x))
+1-8+8e74) —1 - (1-8)ulx) .
={a—-8)[be™P(1 - F(x)) +1—e™#5) — u(x)]

= f;—a[b(l—F(x))—#(x)]-

{A20) is used to reach both the third and last lines of the derivation of (A25). Moreover, if =1,
again using (A20},

(A26) B F(x)) = o) T (1 -7

o |
” 1_‘“—;3“(1) N (1 B 1—ae? ]1
>u(x), since u(x)sg=1.
Therefore,

Vi(r) =

af a8
U DL R
1—69_3( V(r}de Py re P e

—w‘(r)[b(l—F(r))(hﬁe“’) (L+(1-8)8)]
+f‘w'(x)b(1—ﬁ(x))ae dx f (Y1 - 8)——> ‘“( ) 4

-(—}f

a#(x)

ey EO R0 =0e7)

(14 (1= 8)u(x))] ”( ) )

=(1-877) [aﬁ e B(=8V(r)+r+8b7,)

L BO-FO)(L-3e78) = (1+(1-8)8)
_(e (1—8)e? +8 )

—(1- a)f [a- a)eﬂ“wa]"a‘b(x)

X(l B(I—F(x))(1-8e"8)—(1+(1 - a)p(x))) ]
(1 —3) + dem#0

e fla—8)[b(1-F(r))-A]
a(l-5+8e P

LO=Baz) pan) e b= F(0) k() }

38
= [”a—r'e_a(r —-8¢) -

o PR T R L Ve B P . PRt
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Naw, if & =38, the second and third terms vanish, and V'(¢) 2 0 as r S 8D, hy (A6), s the efficient
teserve price is also the equilibrium. If &(1 — F(+)) = 1 at the point where r* =39, then 8 =1 and
the first two terms vanish. By (A26) and (A7), we have sgn P’ (r*)=sgn(e — 8) > 0. Thus +* is
inefficiently low.
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