Correlated Information and Mecanism Design

R. Preston McAfee; Philip J. Reny

Econometrica, Volume 60, Issue 2 (Mar., 1992), 395-421.

Stable URL:
http://links jstor.org/sici?sici=0012-9682%28199203%2960%3 A2%3C395%3 ACIAMD%3E2.0.CO%3B2-4

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Econometrica is published by The Econometric Society. Please contact the publisher for further permissions
regarding the use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/econosoc.html.

Econometrica
©1992 The Econometric Society

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2003 JSTOR

http://www.jstor.org/
Wed Jan 29 16:26:46 2003



Econometrica, Vol. 60, No. 2 (March, 1992), 395-421

CORRELATED INFORMATION AND MECHANISM DESIGN

By R. PREsTON MCAFEE AND PHiLIP J. RENY!

In most models of asymmetric information, possession of private information leads to
rents for the possessors. This tends to induce mechanism designers to distort away from
efficiency. We show that this is an artifact of the presumption that information is
independently distributed. Rent extraction in a large class of mechanism design games is
analyzed, and a necessary and sufficient condition for arbitrarily small rents to private
information is provided. In addition, the two person bargaining game is shown to have an
efficient solution under first order stochastic dominance and a hazard rate condition.
Similar conditions lead to full rent extraction in Milgrom—Weber auctions.

Keyworps: Surplus extraction, efficiency, mechanism, correlated information, auc-
tions, private information.

1. INTRODUCTION

IN MOST MODELS OF PRIVATE OR ASYMMETRIC INFORMATION, pOSSEssOrs of
private information receive rents or profits. For example, in the independent
private values auction, the winning buyer pays less for the item for sale than it is
worth to him, even when the auction is designed to maximize the price paid to
the seller.?

Milgrom and Weber (1982) show by example that these rents result from the
privacy of the information rather than its accuracy. Basically, if the information
is held by two players, it has no value to either player. One can think of a
Bertrand competition set up by a third player (the mechanism designer) to
extract the information. More generally, when players’ private information is
jointly distributed in a perfectly correlated manner, it is easily rendered public
and hence provides its possessors no rents.

Many applications of the mechanism design paradigm include the assumption
that the information held by the players is jointly independently distributed.
This has the implication that the information is purely private, in the sense that
one learns nothing about one player’s information from another player’s infor-
mation. Hence the kind of Bertrand competition which reveals the private
information when it is perfectly correlated fails to do so here. As a result, the
independence assumption often leads to positive rents accruing to the posses-
sors of private information. Under the assumption that agents are risk neutral,
we find that introducing arbitrarily small amounts of correlation into the joint
distribution of private information among the players is enough to render
private information valueless, in the sense that its possessors earn no rents. It is
worth noting that while this result does depend upon the agents’ attitudes

!We thank Andreu Mas-Colell for helpful discussions, and an anonymous referee who both
suggested that we pursue the characterization result (Theorem 2), and dramatically improved the
proof of Corollary 3.

“2 Myerson (1981), Riley and Samuelson (1981). See McAfee and McMillan (1987) for a survey of
the voluminous auction and mechanism design literature.
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396 R. PRESTON MCAFEE AND PHILIP J. RENY

toward risk (risk neutrality is heavily used), it applies to virtually all mechanism
design environments of interest. Furthermore, we provide a condition on the
joint distribution of agents’ private information which is both necessary and
sufficient for reducing the value of this information to zero.? This condition
essentially asks that each agent’s private information not be entirely uninforma-
tive about other agents’ private information, and thus rules out the case of
independence.

Crémer and McLean (CM) (1985) and (1988) motivated the present study.
The (1985) paper provides a condition on the joint (conditional) distribution
over consumers’ (uncertain) characteristics sufficient for a price-discriminating
monopolist to extract from them the full surplus. Their (1988) paper focuses on
the private values auction environment (each agent’s value of the item for sale is
known to, and only to, that agent), where the agents’ values are correlated. A
condition is provided on the joint (conditional) distribution over agents’ values
that is both necessary and sufficient for allowing the auctioneer to extract all of
the surplus from the bidders.

One of our main objectives is to demonstrate that these results go well
beyond the auction environment. The results we obtain apply to all mechanism
design environments with risk neutral bidders in which an agent’s type affects
his payoff in a continuous manner. In particular, one can apply our results to
problems involving the allocation of public goods, optimal taxation schemes, and
a variety of agency and regulatory environments.

Both of CM’s papers make heavy use of not only agents’ risk neutrality, but
also the assumed finite state space. In CM (1985), each consumer’s utility
function is characterized by a parameter that can take on at most finitely many
distinct values. In CM (1988), each bidder’s value of the item is one of finitely
many fixed possible values.

Another of our objectives is to extend CM’s results to the case where the
agents (bidders, consumers, bargainers, etc.) may have infinitely many possible
types. This is not merely an exercise in mathematical completeness. Note that
CM’s result implies that we cannot explain the predominant use of the standard
auction forms based on a revenue maximizing seller, since these auctions leave
bidders with positive rents. However, the finite values model they employ to
obtain their result is only appropriate if the bidders and auctioneers we wish to
model, explicitly take into account the fixed and finite number of possible values
when making decisions. If, on the other hand, the bidders and auctioneers we
wish to model are always willing to admit that “one more” value distinct from
the (finitely many) others currently deemed possible, is also a possibility, then
the appropriate model is not one with finitely many values, but one with
infinitely many. Consequently, if CM’s result does not hold in the infinite values
model and the standard auctions are revenue maximizing there for “many” joint
distributions (allowing correlation) over bidders’ values, then not only do we
regain a revenue maximization based explanation of the emergence of the

3 The condition we present is the continuum analog of that given in Crémer and McLean (1988).
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standard auction forms, we also (because of its inability to explain the facts)
have some basis for rejecting the finite values model outright. Thus, it is a
matter of some importance to pursue this line of research through to the infinite
types case.

To understand CM’s (1988) result, it suffices to consider the case of two
bidders. The bidders (knowing only their own value) must simultaneously
choose whether or not to participate in a Vickrey auction (a sealed bid auction
in which the item goes to the highest bidder at a price equal to the second
highest bid). If they choose not to participate, they get zero. If they choose to
participate, then they must agree to pay a participation fee. The participation
fee is allowed to be random. In particular, bidder 1’s participation fee may
depend upon bidder 2’s bid in the Vickrey auction to follow and vice versa.
Since honesty is a dominant strategy in a Vickrey auction, and since each
bidder’s fee is independent of his own reported value in the Vickrey auction,
reporting honestly remains a dominant strategy. Hence, in equilibrium (f both
are willing to participate), each bidder’s ultimate participation fee is a random
variable, the outcome of which depends upon the other bidder’s value. From
now on, we shall refer to this random variable as a participation fee schedule. In
fact, the mechanism is just slightly more complicated than this. Instead of
presenting each bidder with a single participation fee schedule, the auctioneer
presents each with a finite set (a different set for each bidder perhaps) of
participation fee schedules. After learning their own value, the bidders decide
whether or not they wish to participate in the upcoming Vickrey auction. If so,
they must choose one of the available participation fee schedules. They are then
committed to paying the fee associated with the outcome of that schedule.

If both bidders are willing to participate, then as before honesty is a dominant
strategy in the Vickrey auction to follow. Since a Vickrey auction is ex post
efficient (the item goes to the bidder with the highest value), the mechanism
(auction plus participation fees) will be optimal from a revenue maximizing
point of view if the participation fee schedules can be constructed to recover
any bidder’s expected profits from the Vickrey auction (leaving a bidder with no
surplus, regardless of his value; bidders are therefore willing to participate). We
now show how CM (1988), with an appropriate restriction on the joint distribu-
tion of bidders’ values, were able to construct the required sets of participation
fee schedules.

Let v,,...,0, be each bidder’s set of possible values, and let P be the matrix
of bidder 1’s conditional probabilities. Thus, the ijth entry, p;;, of P denotes the
probability that bidder 2 has value v; given that bidder 1 has value v;. Denote by
D;, the ith row of P. Finally, let m; be bidder 1’s expected profit from the
Vickrey auction (excluding any participation fees) when his value is v;,.

Consider now CM’s restriction on P: for all i=1,...,n, p,&co{p, )i +:
That is, the vector of conditional probabilities corresponding to any possible
value of bidder 1 is not in the convex hull of the vectors of conditional
probabilities corresponding to his other possible types. With the conditional
distribution satisfying this condition, the auctioneer can extract all of bidder 1’s
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surplus as follows:* For each i = 1,..., n, there is a hyperplane x; € R" separat-
ing p; and co{p,} so that x,-p, =0 and x, p, > 0 for all k +i. Now, for each
m=1,...,n construct the participation fee schedule (for bidder 1) z,(j) =m,,
+a-x,;, where a>0 will be specified below. Thus, if bidder 1 wishes to
participate in the Vickrey auction, he must first (knowing his own value) choose
a participation fee schedule z,(-) say, thereby agreeing to pay z,,(j) if player 2
announces a value of v;. Since 1’s payoff in the auction itself is independent of
the participation fee schedule he chooses, he will choose that schedule yielding
the lowest expected fee. That is, bidder -1, given that his value is i, will choose
m =1,...,n to minimize p; -z, =m,, + ap, x,,. Now, since p,-x,, > 0 whenever
m #i and p;-x;=0, we may choose a >0 so that for every i, p,z,, is mini-
mized when m =i. Hence for every i = 1,..., n, if bidder 1 has value v; he will
optimally choose fee schedule z,(+) and earn an expected surplus of zero. Using
a similarly constructed set of fee schedules for bidder 2, the auctioneer can in
this way extract the full surplus.

Since P satisfies the condition described above for almost every distribution
of values (in Lebesgue measure), full rent extraction is “usually” possible. Note
that for such distributions, the precise manner in which P determines the
bidder’s rents in the original Vickery auction need not be considered to
conclude that an optimal auction in this environment must extract all of these
rents. It is this observation of Crémer and McLean’s that we wish to exploit in
Section 2.

Now consider the continuum analogue to CM’s result. Let f(s|t) be the
density of s conditional on an agent’s type ¢ €[0,1], and suppose this agent
anticipates profits 7(¢) on average from participation in the Vickery auction.
The analogous full rent extraction problem for the seller is: Construct finitely
many participation fee schedules z,(+),..., z,(+) so that for all ¢ €[0, 1]

(1.1)  =(¢t)= min j;lzn(s)f(slt)ds.

1<n<N

If such schedules exist, and the agent is risk neutral, then the agent’s rents can
be extracted.

There are several simple observations to be made. First, (1.1) is not generally
solvable. If f does not depend on ¢ (i.e. s and ¢ are independent), and 7 is not
a constant function, then (1.1) has no solution. Second, if the support of f(-|¢)
is monotonic in ¢, then (1.1) reduces to a Volterra equation and is always
solvable.” We shall assume only that the support of f is contained in [0, 1]
Third, solutions to (1.1) never exist for all continuous 7, if f is continuous. That
is, when fe€ C[0,1]* one can always find a 7 € C[0,1] such that (1.1) has no
solution.

* We are grateful to an anonymous referee for providing this argument.
5See Hochstadt (1973). The support of f is monotonic if it is of the form [a(¢), b(¢)]) and 4’ <0
and b’ > 0, f(b(¢)) > 0. See Demougin (1987) for an economic application.
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Thus, unlike the finite dimensional case it appears as though we can never
conclude that an optimal auction in an environment yielding a continuous
conditional density f(s|¢) must extract all of bidder 1’s (receiver of signal t)
rents, without investigating the precise manner in which f determines 1, since
the 7 we are faced with may be one of those for which (1.1) is not solvable.
Suppose however that given f, the following were true:

(12)  Ve>0,YreC[0,1], 3z,...,zy€ C[0,1] such that V¢ € [0,1]

0<m(r) - IE}tiENfOlzn(s)f(slt) ds <e.

Then, regardless of the = determined by f as a result of the Vickery auction
there is a participation charge which does not induce bidder 1 to refuse to
participate given his type (the first inequality in (1.2)) and extracts all but ¢ of
his rents where ¢ is arbitrarily small. Hence, if an optimal auction exists, it must
extract all of bidder 1’s rents regardless of his type. Thus, it is enough for f to
satisfy (1.2) in order that we may extend CM’s result to the continuum case.

In addition to showing that the continuum analogue of the condition on the
conditional density provided by CM is both necessary and sufficient for full rent
extraction, we shall provide remarkably simple sufficient conditions on f under
which the mechanism designer can extract almost all of the rents (up to an
arbitrary ¢ > 0) for all type realizations ¢.

The techniques developed in Section 2 apply not only to auction environ-
ments but to a large class of mechanism design problems, and do not impose
much structure on the environment (only properties of the density f). As
previously mentioned, these techniques apply to Groves mechanisms for the
allocation of a public good, taxation schemes, agency and regulatory environ-
ments, and generally to environments where the presence of information
correlated to private information is reasonable. However, when a specific
environment is given, somewhat sharper results obtain, because properties of
the relationship between the rent function = and f can be utilized. This is
illustrated in Sections 3 and 4, where specific environments are described. In
particular, conditions leading to complete rent extraction, rather than almost
complete rent extraction, are given.

Myerson and Satterthwaite (1983) consider the following bargaining problem
with two sided asymmetric information: Suppose that a seller’s cost s and a
buyer’s value ¢ are known only to the respective agents, are independently
distributed, and that the supports of the densities overlap, so that the decision
of whether to trade is nontrivial. It then turns out that any ex-post efficient
trading mechanism requires subsidies from outside, that is, there is no efficient
trading mechanism that “breaks even.”

We shall show in Section 3 (Theorem 3) that the combination of first order
stochastic dominance (increases in the buyer’s value tend to increase the seller’s
opportunity cost of sale) and a “hazard rate” assumption on the cumulative
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distribution function of the seller’s reported value given the buyer’s type imply
the existence of efficient solutions to the bargaining problem. Moreover, one
such solution has the property that the buyer pays a positive participation
charge and in addition pays a price less than his value for the good, provided
that trade is efficient. The mechanism is constructed to be incentive compatible
and for the buyer to exactly break even. Moreover, the seller obtains all of the
rents (he gets to sell the good at a price equal to the buyer’s value, making
honest reporting a dominant strategy), and only honest reporting survives
iterative elimination of dominated strategies.

Finally, we consider rent extraction in the Milgrom—Weber (1982) auction
environment, and provide an alternative to the Crémer—McLean results, outside
environments with finitely many private values. A condition analogous to that
used in the bargaining environment leads to full rent extraction in the auction
environment.

The conclusion explores the implications we wish to draw from this analysis.
Although the paper develops tools for solving mechanism design problems with
correlated information, the results (full rent extraction) cast doubt on the value
of the current mechanism design paradigm as a model of institutional design.

2. SURPLUS EXTRACTION

We shall focus on extracting rents from a particular agent, who has type ¢
known only to himself. We take the view that the agent is participating in a
game which leaves the agent with rents equal to w(¢) on average. This game
might be an auction, a bargaining game, or any other game involving private
information. We assume that the agent’s type falls in [0,1] and that = is
continuous, the latter being a feature of any mechanism design game in which
type enters the payoff functions continuously.® Finally, we assume that the agent
can achieve a payoff of zero by not participating in the game in question by
defining 7(¢t) as the surplus in excess of the value of nonparticipation. By the
revelation principle, we restrict attention (without loss of generality) to incentive
compatible mechanisms. Thus, in the game under consideration, we focus
attention on equilibria in which all participants report their types truthfully.

We also assume that there is a mechanism designer who may charge the agent
a participation fee for the right to play the game. Thus, for example, an

“auctioneer may charge for the right to bid, or an arbitrator to a bargaining
problem might charge both agents some amount, etc. In addition, the participa-
tion fee may be a function z of some random variable s, the realization of which
the agent does not know at the time he makes the decision to participate,

% For most of the results of this section, s and ¢ could be members of convex, compact subsets of
Euclidean space. In particular, this holds for Theorems 1 and 2, Corollaries 2 and 3, and Lemma 1,
using minor variations of the proofs.
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although the agent does know ¢, his own type. Call such a z(-) a participation
fee schedule. The random variable s, which determines his participation fee (i.e.
a particular value z(s) of z(+)), might be another bidder’s reported value in an
auction, the other party’s reported value in a bargaining environment, etc. What
is important is that the realization of s is not influenced by the agent’s reported
value of his type. The agent is assumed to be risk neutral.

Let f: [0,1]*> - R be the continuous conditional density of s, given ¢. Given
the participation fee schedule z(-), y(¢) = [lz(s)f(s|t)ds is the agent’s (ex-
pected) participation charge given that his type is ¢. Supplementing the original
mechanism by adding this kind of participation charge, and assuming (for the
moment) that the agent chooses to participate for every realization of his type,
again renders truth-telling as an equilibrium since the agent’s participation
charge is independent of his report. Let R(f) denote the set of all such
participation charges. Hence,

R(f) = {y: (3z € C[0,1])(Vt €[0,1]) y(¢) =jolz(s)f(stt)ds}

cc[o,1].

Note that R(f) is a linear subspace of C[0, 1]. Although we restrict attention to
continuous participation fee schedules z, none of the results change if we allow
for instance z € L'[0,1].

As suggested by (1.2), we employ the supnorm ||y|l=max,_, _,Iy(¢)|. For
any A c C[0, 1], we shall denote the closure of 4 under this norm by A. Hence,
y €A if there exist arbitrarily good uniform approximations x € A:

(Ve>0)(Ax€A4)(Ve €[0,1]) Iy(t) —x(2)l <e.

As noted in the introduction (and by Crémer and McLean (1988)), the
mechanism designer also has available participation charges that are indepen-
dent of the agent’s report and are not contained in R(f). These charges are
constructed as follows: Let N be a finite set of indices, and let z, be a member
of C[0,1] for every n €N. Present the agent with a choice of participation
charges from R(f). That is, the agent selects n € N, and is then charged z,(s)
when s is realized. The agent of type ¢ will select #» minimizing the participa-
tion charge:

folzn(s)f(slt) ds.

If the agent’s choice of n is not used in the game to follow, the participation
charge given by

y(1) = min ['2,(s)(slt) ds
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is independent of his reported value in the game to follow. We denote the set of
such participation charges by r(f) 2 R(f). Thus,

21) r(f)= {y: (AN)(Vee[0,1]) y(t) = 12}321\/folzn(s)f(slt) ds}
cC[o,1].

The following facts are easily established:
(22)  yuyEr(f)=yi1+tr€r(f),
(2.3) yer(f),a=0=ayer(f),

24)  yioveEr(f)= min y, €r(f),

(25) 1,-1er(f),

(26)  yi€r(f), »2€R(f)=y,—y,€r(f).

Now, as outlined in the introduction for the special case of an auction
environment, our goal is to establish conditions under which (1.2) is satisfied.
Even in our more general environment, if this is the case, then regardless of the
7 determined by f and the equilibrium of the given mechanism being played,
for any £ > 0 there is a participation charge in #(f) which induces the agent to
participate in the original game (playing the original equilibrium there), and
which extracts all but £ of the agent’s rents. Since (1.2) is equivalent to the
condition that r(f) is dense in C[0, 1] (with respect to || |]), the problem of full
rent extraction is equivalent to finding conditions upon the conditional density
f(-1+) so that 7(f) = C[0, 1]. The rest of this section is devoted to precisely this
issue.

Our first result provides conditions sufficient for subsets of C[0, 1] to be dense
in C[0, 1]. It is therefore analogous to the classical Stone—Weierstrauss approxi-
mation theorem (see Friedman (1970, p. 116). Our proof follows similar lines,
even though they assume that the closure of their class of functions is closed
under the taking of both minima and maxima whereas we assume that it is
closed only under minima. This accounts for our additional hypothesis (2.11).

Before stating the theorem we define for any £ >0, § > 0, and ¢, €[0, 1], the
set U(e, 8,t,) of (e,8) u-shaped functions at ¢, as follows: u € C[0,1] is in
U(e, 8, t,) if and only if

(i) u(t)>0  forall re]0,1],
(i) u(ty) <e, and
(i) u(t) >1 whenever |[t—1t,|>3.

Note that if £ <e, and 8 <&, then U(e, §,t,) C U(g,, 8, t,). Also note that
U(e, 8, t,) is convex with a nonempty interior.”

"To see that U(e, 8, t;) has nonempty interior, note that it contains the ¢/2 ball centered at
e/2+ |t —tyl /6.
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THEOREM 1: Suppose A C C[0, 1] satisfies
(2.7) x,yEA=>x+y€EA,
(28) xe€4d4,a>0=ax€A,
(29)  xy,...,x, €A, y(t) =min{x,(),..., x,(t)} =y €A,
(210) 1,-1€A,
(2.11)  forall £,8>0 and every t €[0,1], U(¢€,8,t) NA # D.
Then A = C[0,1].

Proor: Fix 7€ C[0,1], and € > 0. Let a be a positive constant satisfying
a > 2||7|l. Choose now any ¢, €[0,1], and corresponding toita §, > 0 such that
l7(t) —w(t)| <e/2 for all t,t' €[ty—8§,,t,+85,] Next, choose u, €
U(e/Qa),§,, ,ts) N A, and let x, (B =aly, (t) u (to))+w(t0) Finally, choose
n,,> 0 such that x, () — w(t)l <g/2 for all te(to ey to T My,)- This is
possible because x O(to) m(t,) and both x, and 7 are continuous functions.

Varying ¢, €[0,1], the intervals (¢, — 7, , tO +n,,) form an open cover of the
compact set [0, 1]. So, there is a finite subcover and we denote the center of the
k intervals comprising the subcover by ¢,1t,,.. . As in the construction
above, we have corresponding to each ¢;, a 5, > O, x,l_ E/T, and 7, > 0 with the
properties endowed them by the construction.

Now, x,(t) <m(1) +&/2 for all t&(t;—n,,t;+n,). Hence, letting y(¢) =
mm1<l<k{)x (1)} for every t €[0,1], we have that y(1) <m(t) + /2 for every
t (0,11 Also for each i, and every ¢ €0, 1],

m(t) _xt,.(t) =(7T(t)_77(ti))+a(ut,-(ti)_uti(t))
<m(t) —m(t) +e/2,
since u, € U(e/Q2a),5,,t;). Hence, if t€[t;—5,, t,+8,] we have m(1)—
x,(1)<e/2+e/2=¢. On the other hand, if t &[t, =5, £;+ 8], x,()>a~-

/2 + m(t,) (since u, € Ule/2a,8,,t)).
Putting these together yields:

x,(8)>m(t) —e, if teE[t;—8,t+85]
and

x(t)za—eg/2+m(t), if t€[0,1\[t,—8,,1,+5,].
But since a was chosen so that a > 2||7|, we have @ —&/2 +m(¢) > m(t) — ¢
for all ¢ €[0,1]. Hence, for every i=1,...,k, x (t) > (t) —¢ for all t [0,1].

This implies then that y(t) > (1) —¢ for all t<[0,1], so that |ly —l <e.
Since & > 0 was arbitrary and y € 4, we conclude that eA. Q.E.D.

ReMARK 1: For the set A =r(f), (2.7)-(2.10) are satisfied (see (2.2)—(2.5)).
Thus, we need only ensure that (2.11) holds in order to produce 7(f) = C[0, 1].



404 R. PRESTON MCAFEE AND PHILIP J. RENY

Also, Theorem 1 continues to hold if s and ¢ vary over a compact metric space.
In particular it covers the finite types case as well.

We now present our main result which provides a necessary and sufficient
condition (the continuum analogue of that in Crémer and McLean (1988)) for
(almost) full rent extraction.

Let A[0,1] denote the set of probability measures on the Borel subsets of
[0,1]. We have the following theorem.

TueoreM 2: F(f) = C[0,1] if and only if the following condition holds:
(*) For every t, € [0,1] and every u € A[0,1],

w({to}) #1 implies that f(-|t0)¢j01f(-|t)u(dt).

Proor: We first prove the necessity of (*) for 7(f) = C[0, 1]. So, suppose that
#(f) = C[0, 1], and that ¢, € [0,1] and u € A[0, 1] satisty (- |to) = [LfC: |)u(de).
We will show that u({z,}) = 1.

Let y(t) = (¢t — t,)?* for every t €[0,1]. Hence, y € C[0, 1] = 7(f). There must
therefore be a sequence {y,};_; of functions in r(f) so that y, —y. Since each
y, € r(f) we have

y,(t) = min {w{’(t),...,w,:n(t)}
1<i<sm,
for every n, and every ¢ €[0, 1], where
wl(t) = flz,-"(s)f(slt) ds forsome z!'e(C[0,1].
0

Thus, for each n and every t €[0,1], y,(¢) = wy, ,(¢) for some i(n,t) <m,. In
particular,

yn( tO) = wi’(ln,to)( tO)

=f()1z,~'z,,,,0)(s)f(slt0) ds
= [ [ 2l () F(sI) () dis
070

1
= [ Wien( ().

Since y,(¢,) = y(¢,) = 0, this implies that the last integral converges to zero.
Now, by definition, y,(¢) < w,.'(‘n,,o)(t) so that (since u € A[0, 1])

[ (D) < [ W o)) 0.

Hence, 0> [ly()u(dt) = [4(t — ty)*u(dt), so that u({z,}) = 1.
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We turn now to sufficiency, and proceed by way of contradiction. Suppose
that 7(f) # C[0,1] and that (*) holds. Since hypotheses (2.7)—(2.10) of Theorem
1 are satisfied when 4 =r(f), it must be the case (by Theorem 1) that (2.11)
fails when A is replaced by 7(f). Thus, there exist £,, §,> 0, and ¢, €[0,1]
such that U(ey, 8y, ) N7(f) = . Since R(f) cF(f) we have a fortiori that
U(gg, 8y, t)) NR(f) = .

Now, R(f) is convex (being a linear subspace) and as previously noted,
U(eg, 8y, ty) is convex and has a nonempty interior. So, by the separating
hyperplane theorem (Dunford and Schwartz (1958, 1988; Theorem 8, p. 417),
there is a continuous linear functional on C[0,1] separating R(f) and
U(e,, 8, ty). Equivalently, by the Riesz representation theorem (Dunford and
Schwartz (1958, 1988; Theorem 3, p. 265)), there is a regular, countably additive,
signed measure u # 0 on the Borel subsets of [0,1] and a constant ¢ € R such
that

(212)  [x(t)p(dr)<c  forall xeR(f), and
0

(213)  [x(t)u(dt)>c  forall x€U(sy, 8y to).
0

Since R(f) is a linear subspace, we must therefore have [Jx(¢)u(dt)=0 for
every x € R(f). (Otherwise there is an x, € R(f) with [{x,(t)u(dt) # 0, and a
suitable choice of a € R yields [Jax($)u(dt) > c, violating (2.12) since ax, €
R(f).) Hence, c can be taken to be zero without loss of generality.

Combining (2.12) and the definition of R(f) we then have

fol{folZ(S)f(slt)ds}ﬂ(dt)=0 for every z € C[0,1].

By Fubini’s theorem, this is equivalent to

]:z(s)[folf(slt)y(dt)] ds=0 forevery zeC[0,1].

Hence, the continuous function of s in square brackets is identically zero.
That is

(2.14) folf(-lt),u,(dt)=0.

By the Jordan decomposition theorem (Cohn (1980, Corollary 4.1.5, p. 125)),
we may write u as the difference between two positive measures uw* and u ™~ at
least one of which is finite. Furthermore, there are disjoint Borel subsets of
[0,1], A" and A", such that u* (A )=u"(A4*)=0, and A*UA4A~=[0,1].
Thus (2.14) becomes

(215) [ fClon*(dn) = [ fC-lon(do).

Regarding both sides of (2.15) as functions of s €[0, 1], integrating over s (with
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respect to Lebesgue measure) and using Fubini’s theorem yields [,+du*=
[4-du~=1, where the second equality is without loss of generality. Hence,
both u* and u~ are in 4[0,1].

Combining (*), (2.15), and the fact that u # 0, yields that neither u* nor u~
is a point mass on ¢,. In particular, since u~€ A[0, 1] is regular (see Billingsley
(1968, Theorem 1.1)), there is a closed subset B of A7, and a § € (0, §,] such
that BN (¢y—6,¢t,+8)=< and pn~(B)>0. Choose K>1/u"(B)>1, and
define the step function x on [0, 1] as follows:

0, ifre(ty—5,ty+9),

x(t)={K, ifteB,
1, otherwise.

Hence, [qx(:)u(dt) <1—-Ku~(B)<O0.
Now, using Theorem 1.2 of Billingsley, it is straightforward to construct a
sequence of continuous functions {x,};_; on [0,1] such that for every n,

(i) x,(t)>1, forevery té& (t,—38,t,+38),
(ii) x,(t) >0, forevery te[0,1],

(i) x,(t) =0,

(iv) for every t €[0,1], x,(t) = x(t),

(v) forevery t€[0,1],  x,(t) <K.

By ()-(iii) x, € U(ey, 8, t,) C Uley, 8y, t,) (since 8 <§,), for every n. And by
(i), (iv), (v), and Lebesgue’s dominated convergence theorem, [jx,(f)u(dt) >
J¢x(£)u(dt) < 0. Thus for n large enough, [ix,(t)u(dt) <0, contradicting (2.13).

Q.E.D.

To better understand condition (*), consider u to be a prior on the agent’s
type ¢. The induced distribution on the signal s is then given by [of(- [£)u(dt).
Hence, if f(-1ty) = [3f(-|)u(dt), then learning that the agent’s type is ¢,
provides no new information about the signal s. Condition (*) asks that unless
one’s prior is already concentrated on an agent’s type f, say, learning the
agent’s type is always informative about the signal s. In particular, when s is the
reported value of another agent (which in equilibrium is a truthful report), (*)
asks that each agent’s private information not be entirely uninformative about
other agents’ private information.

REemMark 2: Note that if for every ¢, €[0,1], there is an x,, €7(f) taking a
minimum uniquely at f,, then setting y(t) =x,(¢) —x,(¢,) in the proof of
necessity above is enough to show that (*) holds and hence (by sufficiency) that
7(f) = C[0,1]. This observation is at the heart of the three corollaries which
follow.®? Like Theorem 1, Theorem 2 also holds if [0,1] is replaced by any

8 Equivalently, if for every ty€10,1], such an x,oei( f) exists, then 7(f) satisfies (2.11) and
hence all the hypotheses of Theorem 1, by Remark 1. Again this yields 7(f) = C[0, 1].
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compact metric space. In particular, the theorem and proof given here cover the
finite types case.

CorOLLARY 1: Suppose x € R(f), y € r(f) satisfy
(Vt)x'(t) >0,
(Vt)y'(t)/x'(t) is strictly increasing in t.
Then 7(f) = C[0,1].

Proor: As noted in Remark 2, we need only find for each 7,[0,1] a
function in 7(f) taking a minimum uniquely at #,. Let

y'(t)
q(t) =y(t) — =—x(1).
x'(to) ()
By (2.6), g € r(f). Moreover
y'(0) S y'(t) J ¥'()
"(t) =y'(t) — "(1)20 ——z—" t2t,.
q( ) y( ) x/(to)x( )< as x’(t) <x/(t0) as <*to
Thus g(¢) achieves a minimum uniquely at ¢ = ¢, Q.E.D.

ReMark 3: Consider a monotonic transformation of F, the conditional c.d.f.
of s given ¢:

G(slt) =F(e(s)ly(2))
where ¢, ' >0, ¢(0)=¢(0)=0, ¢(1)=y(1)=1. Then R(g)={x: x(¢)=
y(~1(2)), y € R(f)}. To see this, note

y(t) =f12(s)g(s|t) ds =/1z(u)f(¢(u)|¢(t))¢'(u) du
0 0
=f012(<°"(8))f(slw(t))ds.

Thus, if y € R(f), y(¥~'(¢)) € R(g) and vice versa. Now suppose, x,y € R(f)
satisfy the hypotheses of Corollary 1. Then x(~1(¢)), y(¢~(¢)) € Rég), and

9

o 37707 5y 2y

TR =:a7“——*ir§¢—1§t;; =[ai/§u;]"’”(”) o
_a_tx(dj—l(t)) u=y¢= 1)

Thus, if Corollary 1 applies to f, it applies to a rescaling of f.

By Corollary 1, it is straightforward to show that combined with first order

stochastic dominance, a sufficient condition for 7(f) = C[0,1] is that

" E[s?|E(s|t)=u] be a strictly convex function of w. The following example
illustrates this.
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ExampLE 1: f(s|t)=1ts'"1. p=E(s|t)=t/t + 1 implies that ¢ =p /(1 —p).
Also, E(s*|t) =t/t + 2, so that E{s?|Es = u}=u /(2 — u), a convex function of
p €[0,1/2]. Thus, letting x(¢) = E(s|t)=t/t+1 and y(¢t)=E(s*|t)=t/t + 2,
we have that y'(¢)/x'(¢) = 2(¢ + 1/t + 2)? is increasing in ¢. Since by first order
stochastic dominance x'(#) > 0, Corollary 1 can be directly applied to conclude
that 7(f)=Cl[0,1]. In general, with first order stochastic dominance and
E[s*|E(s|t) = pn] a convex function of u, x(t) = E(s|t) and y(¢) = E(s2|¢) will
satisfy the hypotheses of Corollary 1. Furthermore, in this case the participation
fee schedules z,(s), can be chosen to be quadratic in s. These conditions are
satisfied for many common distributions, in particular those with mean and
variance increasing in .

_ The lemma to follow establishes a useful equivalence for placing functions in
R(f). [A] denotes the linear span of A. The proof of Lemma 1 is in the
Appendix.

Lemma 1: R(f)=[{f(s]-):0<s<1}].

CoROLLARY 2: Suppose that
(2.16)  (Ve)(3s)(VE'=t) f(slt)>f(slt).
Then 7(f) = C[0,1].

Proor: By Lemma 1, —f(s| -) € 7(f). By (2.16), for each ¢, there exists an s
with —f(s| -) taking a minimum uniquely at ¢. In light of Remark 2, 7(f) =
Clo, 11. Q.E.D.

Figure 1 presents a density satisfying the hypotheses of Corollary 2. The
condition on f expressed in Corollary 2 has a number of interpretations. The
first is the direct one, namely that for each of a player’s types ¢, there exists a
value of the signal s, so that ¢+ maximizes the likelihood of s. Alternatively, one
can relate the hypotheses of Corollary 2 to a strengthening of first order
stochastic dominance. For instance, suppose that in addition to f satisfying first
order stochastic dominance, for every ¢, ¢, € [0, 1] there exists a unique s € [0, 1]
such that f(s|tg) = f(s|t;) and that fixing ¢#,, this s is strictly monotonic in ¢,.
(Figure 2 below illustrates this.) It is not hard to show that in such a case the
hypotheses of Corollary 2 must be satisfied.

The final result of this section provides further conditions for rent extraction
which, in some instances, are simple to verify.

CoRroOLLARY 3: Suppose there exists a set S [0, 1] such that
(2.17)  (Vs€S) f(slt) is strictly concave in ¢, and

(2.18)  (Vt,,t,€[0,1])(3s €S)  f(slty) = f(slty).
Then 7(f) = C[0,1].
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0
FiUrE 1.—f(s|t) = 2min{s/¢,(1 —s)/(1 — t)}.

f(-1t) f(: 11) f¢ |t2)

t <t1<t2

styt) s(yt)

FIGURE 2.
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Proor: Suppose (2.17) and (2.18) hold, but (*) fails. Then there exists a
t,€[0,1] and u € 4[0,1] not a point mass on ¢y, with f(-[ty) = JFCpde).
Define ¢, = [tu(dt). Since f(s|t) is strictly concave in ¢, for all s €S, we have,
by Jensen’s inequality,

(Vs 8) f(slto) = [F(sle)u(dr) <f(slt,),
which contradicts (2.18). Q.E.D.

We gratefully acknowledge that a referee provided us with this dramatically
improved proof.

REMARK 4: If the set S in the hypotheses of Corollary 3 is compact and
convex, it follows that for all ¢, € [0,1], there exists an s €S so that f(slt) is
maximized at ¢ =t,, in which case the hypothesis of Corollary 2 is satisfied.
However, there are examples where S is not convex and the hypothesis of
Corollary 2 fails to hold, even though the hypotheses of Corollary 3 hold.

ReMaRk 5: The conclusion of Corollary 3 continues to obtain if, in the
hypotheses, “concave” is replaced with “convex.”

REMARK 6: One case of interest occurs when f(s,lt) is strictly concave and
decreasing in ¢, while f(s,|t) is strictly concave and increasing in ¢. In this case,
S ={s,, s,} suffices, as (2.18) follows immediately. Thus, we can establish the
desired property without any information about “most” of f.

REemark 7: Corollaries 2 and 3 continue to obtain when s and ¢ are members
of convex, compact subsets of Euclidean space, which includes the case of many
players. Thus, there is nothing special about the one dimensional case, at least
for these results.

We now show by example that the combination of first order stochastic
dominance and affiliation is not sufficient to guarantee 7(f)= C[0,1]. As the

example illustrates, the combination of these properties admits an f with R(f)
comprised of only linear functions and no u-shaped functions.

ExampLE 2: f(s|t) =1+ (2s — Dt. Note [of(s|t)ds =1+ (s? —9)tlo=1, and
f(slt)>1—1¢t>0, so f is an admissible conditional density.

F(slt) =]:f(ult) du=s+1t(s*—s),

F(slt)=s>—s<0 for s€(0,1),
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so F satisfies strict first order stochastic dominance. Also,

92 d 2s—1
ds dt log f(sl1) ds 1+ (25— 1)t >,
so f is affiliated (see Milgrom and Weber (1982)). Equivalently, f has the
monotone likelihood ratio property.

Finally, R(f) =[{1, #}], the set of linear functions. (1 indicates the constant
function, ¢ the identity.) It is easily seen that 7(f) is then the set of concave
functions, and is thus a strict subset of C[0,1].

We mention briefly that the results of this section can be extended in a
straightforward manner to the unbounded support case. This may require
allowing players to choose from among countably (rather than finitely) many
participation charges, so in what immediately follows r(f) is:

() = {76 & (1) = min [z,()f(sle) ds

for some countable subset  {z,},_, of C(IR)},

where C(R) denotes the set of bounded continuous functions on R. Corollary 1
above goes through verbatim.

CoroOLLARY 1': If x €R(f), yer(f), x' >0, and y'/x' is strictly increasing,
then ¥(f) = C(R).

Corollary 2 above also admits a natural counterpart namely, Corollary 2

COROLLARY 2': Suppose

(i) Vi€ R,3s €R such that:
(a) f(slt)>f(slt) Vi +#¢,
(b) f(slt) > limsupf(slt'),

[t'] >
and
(ii) f(+1+) is uniformly continuous on R>.

Then 7(f) = C(R).

Both Corollaries 1" and 2’ are of particular interest since their hypotheses are
satisfied when s and ¢ are jointly normally distributed, with nonzero covariance.
The proofs of Corollaries 1' and 2’ follow from suitable modifications of
Theorem 1 and Lemma 1. The hypotheses of Corollary 1’ are also satisfied when

_the agent’s type and the signal are additively related (i.e. f(s|t) =h(s — 1)), and
to cases in which s =x,+x,; and t=x,+x, where the x;s are independent
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draws from gamma distributions with parameters (a;, 8;), i =0,1,2. In each of
these cases, participation fee schedules z,(s) that are quadratic in s suffice.

We now return to the case of bounded support and end this section with a
brief application. (A more detailed application is provided in the next section.)
Consider a principal designing a contract for a risk neutral agent possessing
private information ¢ <[0,1]. The principal knows he can receive signal s
correlated to ¢, sometime in the future. What is the value of s? Consider the
full information gains from trade G, and the solution to the informationally
constrained contract design problem, which gives the principal profits of G’. We
have shown that if an efficient mechanism exists, then, for many densities, the
value of the correlated information is G — G’. This follows since the principal
can set up a mechanism which is full-information efficient, producing rents G,
and then extract those rents via a participation charge z,(s). That is, the
principal “sells the agency” to the agent for z,(s). We believe that, in many
economic problems, the presence of correlated information is natural, and
destroys the “inefficiencies resulting from private information” so often cited in
the literature (see McAfee and McMillan (1987a) for references). The third and
fourth sections provide two such examples.

3. BARGAINING MECHANISMS

Consider a buyer with value ¢, known only to himself, of an item and a
potential seller, who privately observes his own opportunity cost of sale, s. It is
common knowledge that s and ¢ were drawn from a joint density g(s, t) with
support [0, 1]2. Both buyer and seller are risk neutral.

As Myerson and Satterthwaite (1983) showed, if s and ¢ are independent,
then there is no efficient mechanism for arranging trades in this environment
that does not lose money on average. As we shall show, however, under
alternative conditions, there is an efficient mechanism. We think it is plausible
that the determinants of the buyer’s value may also influence the seller’s
opportunity cost. Thus when the buyer’s value is high (e.g. due to an increased
estimate of resale value) the seller’s opportunity cost will typically be higher
than usual. Thus, independence of values is likely the exception rather than the
rule. We now show how the results obtained in the last section (Corollaries 1, 2,
and 3) can be used to demonstrate the existence of an efficient mechanism when
the values are correlated.

Consider first the following “pre”’-mechanism which includes a risk neutral
third party who acts solely as a budget balancer when necessary. Let r,, 7,
denote the seller’s, buyer’s reported signal respectively. If Ty <Tgs then the
seller receives rg for the good and the buyer pays r,. The difference rg —r,, is
made up by the budget balancer. If r, > rg, then the good is unsold and no
payments are made. Honesty is a dominant strategy for both buyer and seller
here and in equilibrium the budget balancer is expected to lose

G=/01[0'(t—s)g(s,t)dsdt,
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the expected gain from trade, which we assume is positive. This pre-mechanism
is clearly ex-post efficient although it requires “outside” money. Myerson and
Satterthwaite showed that any ex-post efficient mechanism requires outside
money (in the sense that a budget balancer must be included and would expect
to lose money) when the valuations of the buyer and seller are independently
distributed and ‘their supports intersect in an interval.

However, let h(s|t) be the conditional density of the seller’s value given that
the buyer’s value is ¢ and let k(z|s) be the conditional density of the buyer’s
value given the seller’s value is s, and suppose that both & and k satisfy *)
(ruling out independence, in particular). Then, letting 7% 7? denote the
seller’s, buyer’s rent function (a function of their respective value of the good)
respectively obtained from participation in the game defined by the pre-mecha-
nism, we have, for (s,¢) €[0,1]%,

(3.1) w”(s)EfOl(t—s)k(tls)dt,

(32)  wh(1) Efol(t—s)h(slt)ds.

Now, by assumption 7(k)= (k)= Cl[0,1]. Hence, given any & >0 there exist
finite sets of participation fee schedules {z/?}, Ng» {Zi}ne n,, One for the buyer
.and one for the seller, such that for all (s,¢) €[0,1)%,

(33)  0<mo(s)— min [z7(0)k(tls)dt <e
neN,’o

and

(34)  0<mP(r) - min ['2B(s)h(slt) ds <e.
neNg 70

Hence, if we supplement the pre-mechanism above by offering the seller a
choice among participation fee schedules from {z7}, < N, and his value is s, he
will expect to be charged

1
v = mi T(t)k(t|s) dt
c?(s) = min ['27(1)k(tls) dt,

since by choosing n € N, he will be charged z2(¢) if the buyer reports value ¢.
His rents therefore become m°(s) — ¢?(s) and lie between 0 and & by (3.3). The
buyer must similarly choose among {z£}, Np and his rents become 7A(¢) —
cP(t) €[0,¢] when his value is ¢ and where cf(¢) is defined analogously to

¢?(s). All revenue generated by these participation fees is given to the budget
balancer.
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Hence, the budget balancer’s net expected revenue becomes:

R=[[[e()g(s,0) dsde+ [ ['e8(1)g(s,0) drds — G

>(G-¢)+(G—-¢)-G

=G —2¢
where the inequality arises from the definitions of G, c?(-) and c¢A(-), and
(3.1)-(3.4). So, for & small enough, R > 0. Finally, choose « € [0, 1] and require
the budget balancer to give the seller R and the buyer (1 — a)R (indepen-
dently of reports), so that the budget balancer now expects to break even. Since
none of the charges we have introduced affect the buyer’s or seller’s incentive to
reveal his true value, this mechanism (i.e. pre-mechanism plus net participation
charge) is ex-post efficient and allows the budget balancer to break even on
average. Note that since R —» G as ¢ — 0, by choosing « € [0, 1] appropriately
we may give the seller §G of the gains from trade for any & € (0,1). On the
other hand, giving all of the gains from trade to either the seller or the buyer
may not be possible with participation charges of this sort.

As mentioned in the introduction, the analysis of the rent extraction problem
is greatly simplified when one need not take into account the precise relation-
ship between the conditional density f and a player’s rent function 7. On the
other hand in some environments this more detailed analysis is tractable and
provides stronger results; namely, all rents rather than almost all rents can be
extracted and more importantly the mechanism which extracts the rents can
actually be constructed rather than simply shown to exist. As we now show, the
Myerson and Satterthwaite bargaining environment is amenable to this more
detailed approach.

As before, g(s,t) is the joint density between the buyer’s and seller’s
valuation of the good. Let

F(slt) =g(s,t)/f01g(u,t) du

so that f is the conditional density, and let

F(slt) =]Osf(u|t)du

be the distribution function of s, conditional on ¢. Let F,(s|t) =/t F(s|t). By
taking advantage of our explicit description of this mechanism design environ-
ment, we get the following result:

THEOREM 3: Suppose Y(s,t) € (0,1)?,
(3.5) Fy(slt) <o,
a F(slt)
(3.6) 5_,[H Fz(slt)}>0'

Then there exists an efficient trading mechanism giving all of the rents to the seller.
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Proor: We display the mechanism. The buyer and seller make reports (r and
§, respectively) of their values ¢ and s, respectively. The seller receives r for the
item if r > §, and otherwise no trade occurs and the seller gets nothing. Honesty
is a dominant strategy for the seller, and should the buyer choose to be honest
(as he will in equilibrium), all the rents go to the seller. The buyer is awarded
the good if r > §, and is required to pay

F(rlr 2

_ECn) it r<s,
Fy(rlr)
F(rlr)  F(rlr)® .

r if r>§.

Fy(rlr)  Fy(rlr)

Since the seller is honest, this provides a buyer with value ¢ who reports r rents
equal to
F(rlr)? F(rlr
u(r,t) =(—)—-+ t—r— (rlr)
Fy(rlr) Fy(rlr)
as § <r with probability F(r|?).

Since u(t, t) = 0, the buyer is willing to participate, as he can obtain at least 0.
We need only verify that he can do no better than 0 to complete the proof:

F(rlt)

F(r| F(r|
rZt as t+F2((r|tt)) <r Fz((rlrr)) (by (3.6)),
F(rlr) F(rlt)
s [ e 5

B Fy(rlr)

as u,(r,t) 20.

[ F(rlr) ] -
as |t—r Fy(rlt) + F(rlt) 20 (by(3.5)),

Thus u,(r,t) Z 0 as r 2 t. We conclude that u(r, ) >0, since u(r, t) increases in
t for t<r up to u(r,r)=0, and then decreases in t>r. Consequently,
incentive compatibility is satisfied. Q.E.D.

ReMaRrk 8: The mechanism requires a budget balancer, since payments by
the buyer equal payments to the seller on average, but not for all realizations.

We wish to argue that the hypotheses of Theorem 3 are plausible. The first
hypothesis, first order stochastic dominance, merely requires that the aspects of
the environment that increase the buyer’s value also tend to increase the seller’s
opportunity cost. Thus there is a “common value” aspect to sale: increases in

_ the buyer’s value also increase the seller’s use value of the item. The second
condition (3.2), looks like a hazard rate condition (see McAfee and McMillan
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(1987a) for an intuitive explanation), and is equivalent to
92 1
W Fislt) G10) >0.
This condition may be related to the “usual” hazard rate condition,
3/05(s +F(5) /f(s)) >0,
by observing that the latter is equivalent to
? 1
-(67)2 m = 0.

Thus, (3.6) requires the standard. hazard property to hold for ¢ instead of s.
This condition is satisfied for many examples. Example 1 in the preceding
section satisfies it, so that, although r(f) contains only concave functions, and
the profits net of participation charges to the buyer in efficient mechanisms are
strictly convex, the rents may still be extracted. This paradox is resolved by
noting that the mechanism described here is not of the Section 2 form (which
consist of participation charges alone) but links the participation charge to the
sale of the item. Therefore, by exploiting aspects of the game, a mechanism
designer can attain allocations which cannot be attained using unconnected
participation charges and gambles.

To summarize, under reasonable assumptions on the distribution of values,
which imply a certain amount of correlation, there exists an efficient solution to
the bilateral bargaining problem with asymmetric information.

Next we show that Milgrom and Weber (1982) auction environments are also
amenable to the more detailed analysis just applied to the bargaining problem.
This supplements the implications of our analysis in Section 2 that under the
hypotheses of either Theorems 2, 4, or 5 an optimal auction extracts all bidders’
rents by providing conditions under which an optimal auction exists and a
construction of such an auction.

4. OPTIMAL AUCTIONS

Milgrom and Weber (1982) present a general model of the auction environ-
ment, allowing for correlation among valuations, and valuations which are
viewed by the bidders as random. For simplicity, we shall consider the case of
two bidders. It is assumed that the seller values the item at zero. The bidders
receive signals s and ¢ respectively, privately observed, which are generated by a
density g(s, ) with support [0,1]%. We assume g is symmetric and focus on
bidder “1” who has signal ¢. Let

f(slt) = l—g(si—, and
f g(u,t)du
0

F(slt) =]:f(u|t)du.
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Even if bidder 1 knows s and ¢, his valuation may be random, so we let u(¢, s)
be the expected value of the object to bidder 1 given s and ¢. Symmetrically, we
assume that the other bidder values the item at u(s, ¢). Finally, we assume that
u is strictly increasing in its first argument, and that

t>s=u(t,s)>u(s,t)

so that the agent with the highest signal is the efficient consumer of the item.
Define

v(r,t) = joru(t,s)f(slt) ds = E{u(t,s)|ls <r}F(rlt),

which is the expected valuation to bidder 1 if his signal is ¢ and he obtains the
item whenever s < r. As before, subscripts denote partial derivatives.

THEOREM 4: Suppose (s, t) €(0,1)?
Fy(slt) <0,  and
9 v,(s,t)
— 2 .
at F,(slt) :

Then there exists an efficient mechanism which extracts exactly all of the bidders’
surplus, and hence is optimal from the seller’s point of view.

Proor: Suppose bidder 2 reports his signal honestly, and bidder 1 has signal
t and reports r. The mechanism awards bidder 1 the item if r > s, with a charge
of B
vy(r,r)F(rlr
o(r,ry = ZDEED
Fy(rlr)
vy (r,r)F(rlr)  vy(r,r)
v(r,r) — + s
Fy(rlr) Fy(rlr)

Bidder 1’s profit is

sS<r.

vy(r,r)(F(rlr) —F(rlt))
F,(rlr) )

w(r,t) =v(r,t) —v(r,r) +

Clearly =(¢,t) =0, so individual rationality is satisfied.

r,r)F,(rl|
"Z(r’t)=U2(r’t)_£2—(_FT()—’T%L)%

v, (r,t v, (r,r
2( )é 2(r,7) as 157,
Fy(rlt) = Fy(rlr)
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Thus, 7(r, t) is maximized, as a function of ¢, at ¢ =r, that is,
w(r,t) <m(r,r)=0.

Consequently, incentive compatibility is satisfied. The mechanism is then effi-
cient, incentive compatible, and extracts all the rents. Q.E.D.

RemARrk 9: If the auction is a private values one, u(s,t)=¢ and v(r,t) =
tF(r|t). Thus

d vy(r,t) 0 ( F(rlt) )
— = —t+ —5],
at Fy(rlt) ot Fy(rlt)
which is the hazard condition (31) from the previous section. Generally, this
condition says that the expected value of receiving the item whenever s <r is a
convex function of F(r|t), which is not (at least to us) an intuitive requirement.
For the common value environment, where u(¢,s) = u(s, t), and where there
is no issue of efficiency (awarding the item to an agent chosen at random is
efficient), a stronger result holds. As long as s and ¢ are independently
distributed conditional on the true valuation (which is unknown), all but an
arbitrarily small fraction of the rents may be extracted. This result may be found
in McAfee, McMillan, and Reny (1989).

5. CONCLUSION

We have examined the robustness of mechanism design solutions when
independence of information does not hold. We found that private information
is often worthless; it does not lead to rents for its possessors in a variety of
contexts.

A common reaction to this paper focuses attention on the heavy use made of
the agents’ risk neutrality, and argues that only together do the assumptions of
risk neutral agents (RNA) and independently and identically distributed infor-
mation (iid) combine to make a good proxy for the more difficult real world case
of risk averse agents and correlated information. Consider the auction environ-
ment. With RNA and iid, any of the usual auction forms maximize the seller’s
revenue. This is taken as corroboration of the mechanism design paradigm. On
the other hand, we know that when either RNA (Maskin and Riley (1984),
Matthews (1983)) or identically distributed information (Myerson (1981)) fail,
the usual auction forms do not maximize the seller’s revenue. From this paper,
if independence fails, the usual auction forms do not maximize the seller’s
revenue. Thus, if either RNA or iid fail to hold, we do not have a mechanism
design explanation of the usual auctions. In light of this, it is difficult to believe
that if both RNA and iid fail, the mechanism design solution will be similar to
the cas€ in which they both hold. We consider this a strong argument that
mechanism design has no reasonable explanation of the usual auction forms,
and that some other criteria must be invoked.
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This begs a substantially more difficult question which we have not addressed.
It is a remarkable fact that the English auction (with reserve price) is the
solution to a mechanism design problem, maximizing the seller’s expected
profits, in the independent private values framework. However, minor perturba-
tions of the environment destroy this result. To see this, note that if f(s|¢) is a
conditional density of s given ¢ satisfying (*) or the hypotheses of any one of
Corollaries 1, 2, or 3, then for any ¢ €(0,1) g,(slt) =1 —¢&) +&f(slt) is also a
conditional density of s given ¢ and satisfies the hypotheses of one of our
theorems. Furthermore, g, converges in sup norm to the independence case as
£ goes to zero. This indicates (at least to us) that the prevalence of the English
auction in selling items whose value is uncertain is almost certainly not due to
the fact that sellers are maximizing expected revenue.

The English auction does possess some important features. Milgrom and
Weber (1982) showed that because the English auction reveals a lot of informa-
tion as bidders drop out of the bidding, prices are pushed higher on average.
Moreover, we suspect that the English auction does well in a variety of
circumstances precisely because it does not depend, as a selling mechanism, on
information about the specific environment, such as densities of valuations, etc.

We are not surprised that the mechanisms described in this paper are not in
common use, because these mechanisms (the z functions) will generally be
sensitive to the environment’s description (e.g. f).° Thus, this paper is really
more about economists’ models of asymmetric information than about asymmet-
ric information itself, since generally the description of the environment, at the
level of detail required by mechanism designers, is absurd.

Therefore, a reasonable question for the mechanism design literature is how
to capture the importance of robustness. Specifically, we think the answer to
questions like “under what circumstances are English auctions used?”” has much
to do with the need for an institution to perform “well” in a variety of
circumstances. Indeed, one might well imagine that the circumstances are at
least partially determined by the institution. That is, English auctions will
attract buyers who prefer the English auction over another selling institution,
and thus the choice of mechanism affects the distributions. One cannot hold the
distributions fixed in the experiment of choosing the mechanism.!”

These concerns have led several authors (Holmstrom and Milgrom (1987),
McAfee and McMillan (1987b), Laffont and Tirole (1985)) to look for environ-
ments in which “simple” contracts or mechanisms are optimal in a wide variety
of circumstances. These papers share a theme that a mechanism designer’s
desire to use complicated mechanisms which exploit aspects of the environment
(utility functions, distributions) is reduced by enlarging an agent’s action space.

° Indeed, it can be easily shown that the “optimal” mechanism, where optimal maximizes one
agent’s rents, is not continuous in the density of values.

A glimmer of this idea may be found in McAfee and McMillan (1987c), which examines
- optimal auctions when participation is costly, and the participation decision is made after the
mechanism is chosen. This destroys the seller’s incentive to post a reserve price, common to the
literature, and exchange is efficient.
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Effectively, an agent can thwart the mechanism by exerting effort at a small cost.
The lesson of this paper is that asymmetric information, when combined with
risk neutrality, plays a small or nonexistent role in such a research program.
Generally, in environments with correlated information, the importance of
private information is near zero.
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APPENDIX

Proor ofF LEmma 1: (2): Fix sy €[0,1] and ¢ > 0. For s €[0, 1], let

z(s) =

1/2a if so—a<s<sy+ta,
otherwise,

and choose a so that
Is —sol <a=|f(slt) =f(solt)l <&

(this is feasible since f is continuous on a compact set, and hence uniformly continuous). Then

[ 202151y ds =1l

- f"“’—f(sn)ds— f(solt)|=

So—a

1  so+a sp+a
<3g G = f(sole)ds < / Ceds=e.

sojxa(f(slt) —f(s0lt)) ds

Thus, for so€(0,1], f(sol -) €R(f). Since R(f) is closed under linear combinations, we have
established one inclusion.
(<) Since z, f are continuous, Ve > 03s;,..., s, such that for all + €[0,1],

<e.

k
/(;lz(s)f(slt)ds -1/k Z z(s)f(s:lt)
i=1

Thus [3z(s)f(s, - )ds € [{f(s]| -)ls € [0,1]}] as desired. : Q.E.D.
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