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The celebrated model of Gallego and van Ryzin is specialized to the case of constant elasticity of demand.
A closed form is developed, which has an even simpler form than that arising with exponential demand
and which possesses an excellent approximation. In this environment, monopoly is efficient, which means that
all the behavior usually atiributed to monopoly pricing is actually a consequence of efficient pricing and would
arise even in a perfectly competitive environment. If the initial supply is not too large, consumers have no
incentive to delay their purchases to get a lower price at the average inventory prevailing at any time.
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Introduction

Standard dynamic pricing models, ably and thor-
oughly reviewed in Talluri and van Ryzin (2004),
either work with general demand forms or with the
special case of exponential demand, where the pro-
portion of people valuing the good above price p
comes in the form e~*#=%0), for p > p,. This special case
is used only because it is simple to solve; it is not a
standard demand form used by economists. Whereas
the general case is obviously preferable to any spe-
cial case, often the general case resists application,
and special cases have their virtues. This short paper
offers an alternative special case that arises from the
most common demand structure used by economists
and that has other useful analytic properties. (Mona-
han et al. (2004) also considered constant elasticity of
demand in a dynamic pricing problem; the connec-
tions between that deep paper and the present study
appear after the results are presented. Recent contri-
butions in the theory include Queen et al. (2007), Shen
and Su (2007), and Xia and Dube (2007).) We show
in particular that with constant elasticity of demand,
the monopoly solution is efficient, so that the behav-
ior attributed to monopoly pricing is actually a con-
sequence of efficient pricing, a fact difficult to see in
the general model. In addition, we demonstrate that if
the initial demand is sufficiently large relative to the
number of units available, search will be on average
unprofitable, supporting the commonly maintained
hypothesis that customers either buy immediately or
go away.

Consider the (static) demand held by a partic-
ular potential customer. Demand functions gener-
ally give the quantity q(p) demanded as a func-
tion of price p. A demand function is said to have
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constant elasticity if € = —pq'(p)/q(p) is a constant,
in which case we can write g(p) = ap~¢. Constant
elasticity is useful in the dynamic pricing context
because it starkly simplifies the monopoly pricing
problem. Consider a monopolist facing constant elas-
ticity of demand & and a marginal cost c. This firm’s
profits are

m=max(p - c)q(p) = (p — )ap™*.

It is straightforward to verify that, first, if € <1, or
if e=1 and c >0, then the problem has no solution.
(The “solution” is to sell an infinitesimal quantity at
an infinite price, a fact made evident by considering a
discrete version of the problem.) Second, if & > 1 and
¢ > 0, the solution to the monopoly pricing problem

15
&

= . 1
p= e M
We can exploit this fact, that the monopoly price is
a constant proportion of marginal cost, to produce a
solution to the dynamic pricing problem. The static

profits turn out to be

a (8 - 1)2‘1 Cl——z:.

e

= . (2)
£
From this point on, we assume ¢ > 1. We start with
the standard dynamic pricing problem adapted from
Gallego and van Ryzin (1994). Consider a good that
is valueless if not sold by time T. Let A(p, t) be the
Poisson arrival rate of customers willing to pay p
at time t. Suppose the cost of service is zero. (In
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the airline context, the cost of service includes gaso-
line, meals, complaint resolution, and other costs that
depend on a seat being occupied but may also include
the lost opportunity to sell a flight on another aircraft
to a particular customer. Most of these costs are quite
small, but it is troubling to assume that the value of
the opportunity to sell the same individual a differ-
ent seat is zero.) Let v, () represent the continuation
value (net of any past sales) to the seller of having n
items to sell at time t. By hypothesis,

0,(T) =0. (3)

In addition, having nothing to sell should also be val-
ueless, so that at all ¢,

Uo(H)=0. - @

Following Gallego and van Ryzin, the Bellman equa-
tion entails

0, (1) = —max Ap, )(p = (0.(8) — 2,4 (8))).  (5)

Now posit constant elasticity, so that A(p, t) = a(t)p~.

Then the maximization problem embodied in ®):

comes in the same form as before and hence has the
solution (1)-(2), which yields

(e— )"1

Op(t) = —a(t)———(v, () = 0,1, (1)) °.  (6)

Define a sequence f3,, by By =0 and B, as the solution
exceeding B,.; to B, = ((6—1)/e)* (B, ~ Ba1)' ™"
The values of B, exist and are uniquely determined,
a fact evident from writing

e—1 e—1 e
ﬁn(an _‘Bn—l) = e (7)
and noting the left-hand side is increasing and diver-
gent in 8,, for B, > B,_,. Moreover, B, — B,_; is a
decreasing function of n, a fact evident from B, —
Br = ((6—1)/)(1/B,)"*" and the fact that B,
is increasing in n. Thus, B, is a concave function
of n.
Let A(t) = ftT a(s) ds. The value A(t) is the expected
number of future sales at a price equal to one.

THeorREM 1. The solution to (3), (4), and (6) is v, (f) =
B.(A(t)VE. In addition, the price posted satisfies

pa(t) =B DAL, (®)

Proofs are contained in the Online Supplement, avail-
able at http://www.poms.org/journal/supplements.
Theorem 1 establishes a closed form for the solu-
tion, given that the terms B are readily computable.
However, an approximation of the B, terms is avail-
able that provides better insight into the behavior of

the prices and profits and is remarkably exact. This
approximation will also permit approximation of the
distribution of items remaining at any given time.
Let g,(t) represent the probability that exactly n items
remain at time ¢.

TuEOREM 2. Lim,_,_B,/n® /¢ = 1. For large n,
Pu(t) = (A(t)/m)"/*, and

N n
s~ ) (5a) (-
n J \A(Q0)

The approximation 8, = (n — 1.5/£)~V/¢, which
approximates equally well in the limit, appears to be
within 3% for n >2 and £>1.1.

Two immediate consequences of Theorem 2 are
that the expected number of items sold by time T is
approximately N(1 — A($)/A(0)), and the number of
items sold is approximately linear in the proportion
of the expected customer arrivals.

Further insight into the exact distribution of quan-
tity can be obtained from considering the flow of
sales. With an inventory of n at time ¢, the flow of
sales is given by

/\(}7, t) = a(t)pn (t)—e — Ll(t) (B;l/(s—l) (A(t))y,;)—s

1) eyie-
A(t)B/( n.

A(t) N—n
A(O)) '

Let 7, represent the random variable that is the time
of the kth sale. Immediately prior to the kth sale, the
inventory is N —k + 1. Given 1, =0 and conditioning
on 7_y,

PrOb{Tk <t | Th— 1}

= —€

S
Loy MPN-ksa (1)) dr/\(PN—k+l (S) s)ds

—f;_l APN—ks1 (1), 1) dr | ¢
5=Tk-1

[Aw%mmm)
a(r) z/(e:—l)d >

_ A( ) N—k+1

= 1—Exp(-—

=1 —Exp(
A(t)

=1”<Aupo)%*i

Thus, we see that (A(1,)/A(1,_,))PNen is uniformly
distributed on [0, 1], which dramatically simplifies the
creation of sample paths. Moreover, Theorem 2 yields
that (A(7)/A(7_))N ! is approximately uniformly
distributed.

The approximation of Theorem 2 readily permits
computing approximate price paths. For example,
suppose A(t) = (T — )*8, which ensures that more
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Figure 1 Expected Price and 95% Confidence Interval
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of the customers arrive close to the time the flight
departs than before. Specifically, in any interval [t, T],
on average about a third more customers arrive in
the last half of the interval than in the first half of
the interval. Figure 1 shows both the expected price
conditional on availability and a symmetric 95% con-
fidence interval (in gray) for prices as well, for the
case of 365 days to sell 200 items and a demand elas-
ticity of 1.5. Two features of the figure stand out. First,
prices rise until the last three days, and the rise is
fairly dramatic the last two weeks. A price increase
the last month is a salient feature of the data on air-
line pricing (McAfee and te Velde 2006), although
the price drop at the end is not. The price drop is
unavoidable in models where the type of consumer
does not change over time, because the cost of sale
must fall toward the end, and prices fall with the
costs. It takes a model with changing demand, such
as in Zhao and Zheng (2000), to account for this reg-
ularity. However, as we see in Figure 1, it is possible
with constant elasticity to get rather close.

Second, the dispersion of prices grows dramatically
toward the end of the period. We believe this to also
be a salient feature of real markets, although there is
less supporting evidence than there is for increased
average prices. Moreover, such dispersion is a feature
of all Gallego-van Ryzin-type models, for the sim-
ple reason that the variance of prices is initially zero
(there is a deterministic initial price) and is zero at T
because the cost of selling any remaining items at the
end of the interval is zero.

Among models in this class, the constant elasticity
case does not present unreasonable predictions and
even does a better job accommodating data than the
exponential demand case.

Efficiency
The prices satisfying Equation (8) are prices chosen by
a monopoly to maximize profits. What are the socially

efficient prices? That is, what would a benevolent dic-
tator choose to maximize the total gains from selling
the N items? This question is important because a
competitive industry would generally choose prices
that maximize social efficiency. Efficiency is a con-
sequence of competition because inefficient offerings
are competed away by companies offering higher
value to customers along with an increased profit,
an action which is possible by reducing the inef-
ficiency. Moreover, examining the efficient solution
may provide greater insight than examining an imper-
fectly competitive industry, such as adeptly intro-
duced by Dana (1999), because it provides a use-
ful benchmark for evaluation for both monopoly and

_oligopoly.

To identify the socially efficient prices, we first
need to identify the value that buyers place on the
good. This is subtle because it is mingled with the
arrival rate of buyers rather than being a standalone
value. To find the expected value, first suppose that
we could write the arrival rate A(x) of consumers
willing to pay a price x as an arrival rate a times
the probability 1 — F(x) that the consumer is will-
ing to pay the price x. (The time dependence is sup-
pressed.) In this case, we have that the expected
value of a consumer being willing to pay the price
x is

o) e avf(o)
E{VIVEX}_/,C 1—F(x) _fx a(1—F(x))
—UA’(U)

/x Ax)

This definition in fact works even in the case where
the arrival rate is not necessarily bounded and
depends on the posted price. In particular, with our
constant elasticity assumption,

—U/\’(v)
)t( )

/x pour i I x. 9

Note that the expected value embodied in (9) is larger
than the posted price x because any consumer willing
to pay x has a value as large as x.

The socially efficient price maximizes the buyer
value rather than the selling price as a monopolist
might maximize. Let 5,(t) represent the social value of
having n items to sell at time ¢. This social value will
satisfy the same endpoint restrictions (3)-(4) that the
monopoly value satisfied and for the same reasons.

E{V{sz}:/
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Then the Bellman equation yields

) = — (s, -
(0 = ~maxay™* (5 = (5,0) = 5130

-1
= —;i—lm;x a(t)p™® (P — 8—8-(Sn(t) — S (t))>.

Thus, the socially efficient price p* is the price
that maximizes p~=(p — ((¢ — 1)/&)(S, (t) — S,_; (t)), and
from (1)—~(2) that price satisfies
. g eg—1
Pn= e—1 T(Sn(t) - 511—1(t))
= 5,(8) = 5,4 (8)- (10)

Equation (10) is intuitive—the efficient price with
" n items is just equal to the cost of sale, which is the
social value of having n minus the social value of
having n — 1 items to sell. This calculation simpli-
fies the differential equation determining the social
value to

s0=-"60-s5.0r @
Using a development entirely parallel to the
monopoly case, it is straightforward to show that
(11), along with the endpoint restrictions, implies that
there are constants v, so that

Su(t) = v, A" (12)

Moreover, v, satisfies v, = (g/(e = 1)) (Vs — Vu_1)'™5,
and thus it is readily verified by (7) that

&

Yn = _-_'.Bn . (13)
-1

From (12)—(13), the efficient price, as a consequence, is
pfl (t) = Sn(t) - Sn—l (t) = (711 - 'Yn—l)A(t)l/E
__°& _ e _
- e—1 (Bn :Bn—l)A(t) pn(t)'

This construction proves the rather remarkable
theorem:

THEOREM 3. With constant elasticity of demand, the
monopoly prices are socially efficient.

At first glance, Theorem 3 seems quite surprising.
Generally, monopolies wish to reduce sales to increase
the price at which the good is sold, thereby both
increasing revenue and reducing costs. In this case,
however, a monopoly prices in exactly the same way
that an efficient, or competitive, supplier would price.
That is, a competitive industry could not improve
on the monopoly solution. This result is a conse-
quence of the nature of marginal revenue with con-
stant elasticity of demand. Efficiency dictates equat-
ing the expected prices charged across time—selling

the total supply at the same expected price, so that
a high-value customer is not turned away when a
low-value customer obtains the good. This is simi-
lar to the monopolist’s goal, in which the monopolist
equates marginal revenue—the revenue added by an
extra unit of sales—across time. Constant elasticity of
demand has the implication that prices and marginal
revenues are proportional to each other, so equating
one equates the other. The only difference between
competition and monopoly, then, would be in total
sales, but we found that the solution to the monopoly
problem entails selling all the units, so total sales are
the same as well. The efficiency of dynamic pricing is
discussed in Stokey (1979).

This fact—that with constant elasticity and a fixed
supply, monopoly and perfect competition coincide—
was already known in another context, the problem
of resource extraction. The general economic model is
that there is a resource—oil, copper, and iron—with a
fixed supply that must be allocated over time. Stiglitz
(1976) demonstrates that with constant elasticity, the
monopoly price and the competitive price coincide.
He also characterizes the effects of increasing elastic-
ity, with a monopoly offering higher prices initially
but lower prices subsequently and thus conserving
the resource relative to a competitive market. Stiglitz's
contribution involved an infinitely-lived world with a
known sequence of demands and thus is logically dis-
tinct from the present analysis; but in light of Stiglitz’s
discovery, the result that monopoly is efficient is less
shocking.

Theorem 3 underscores a more general point. Most
of the literature on dynamic pricing has focused,
not unreasonably, on the monopoly problem and
has attributed the behavior found to revenue extrac-
tion. In an earlier paper (McAfee and te Velde 2006),
we argued that much of the behavior attributed to
monopoly pricing is also a feature of competitive
pricing and efficiency. However, the argument here
is even more compelling: with constant elasticity of
demand, monopoly pricing coincides with competi-
tive pricing and is efficient.

Search and Arbitrage

An unrealistic feature of dynamic pricing models is
the assumption that consumers do not search. Search
in this context could have two distinct effects. First,
a consumer willing to pay the current price might
wait for a better price. Second, a consumer unwilling
to pay the price might return and check for a subse-
quent better price. It is the first kind that we consider
here and ask whether the pricing structure is such
that it pays to wait for a better price—that is, whether
consumers can arbitrage the pricing strategy induced
by profit maximization.
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An immediate simplification is that if it pays to
wait, at some point it pays to wait one moment. For
the customer, search entails a risk that the good is
unavailable. However, if there are at least two units
for sale, and the customer waits a negligible amount
of time, the risk of not being able to buy is arbitrarily
small. Thus, it does not pay to wait if, for all ¢+ and
n > 2 and for small delay A,

Pa(f) < a(t)Ap,_(t+A) + (1 —a(t)A)p,(t+A).  (14)

Inequality (14) states that the price today does
not exceed the expected price tomorrow, where the
expected price is the price with one fewer item in the
inventory in the event that an item sells (with proba-
bility a(t)A) or the reduced price that arises when no
sale is made prior to ¢+ A. Collecting terms, dividing
by A, and then sending A to zero yields

_p;1(t) = ﬂ(t) (Pn—l (t) - Pn(t))' (15)

Using the approximation of Theorem 2, inequality
(14) reduces to (1/&)A(t)Ye a(t)n Ve < a()A(E)Ye -
((n—1)7Ye —n~1/¢), which is equivalent to

n—1 1 i
- <1+8A(t)) <1 (16)

Generally, there will be some values of n and ¢ that
cause (16) to fail, which means it will not be univer-
sally true that search is undesirable. If 7 is large and
A(t) is small, so that there are a lot of remaining items
to sell and not much time to sell them, then a delayed
purchase will be profitable for the customer. However,
at the average level of 1, search can be undesirable, as
the following theorem shows.

Treorewm 4. If N < A(0), then a short delay is unprof-
itable at the average level of capacity prevailing at any
given time.

The proof is' unappealingly mechanical and rele-
gated to the Online Supplement.

It is possible to provide a somewhat weaker, albeit
more complicated, sufficient condition for an imme-
diate purchase to be optimal at the prices prevail-
ing for the expected capacity. Such a weaker con-
dition is not a major improvement on the existing
theorem because there will always be circumstances
where the conclusion of the theorem fails. If A(0) is
small enough relative to N, it will pay for a con-
sumer to wait for likely lower future prices. In such
instances, the characterization of this paper and all
others using the standard framework will be inap-
propriate because customers expecting to purchase
immediately find it in their interest to delay. On the
other hand, we have also demonstrated the positive
result that at the average prevailing capacity, if there

are initially more customers than items, a short wait is
unprofitable.

Theorem 4 helps justify a heuristic for customer
behavior. A customer that checks for a price often
will not know how much capacity remains and thus
would find it challenging to determine whether to just
buy an item or wait. In such a circumstance, a cus-
tomer might adopt a heuristic and do the same thing
in all circumstances. Theorem 4 suggests that no sim-
ple heuristic, e.g., “wait until a month prior to expi-
ration,” is going to dominate just buying at the time
the customer arrives.

Conclusions

This paper examines the standard model of dynamic
pricing developed by Gallego and van Ryzin (1994)
and establishes a closed form solution for the pricing
and value function when demand has constant elas-
ticity. The closed form is substantially simpler than
the closed form that arises with exponential demand,
primarily because it is separable in the number of
remaining items to sell and the expected number of
remaining customers. An approximation for the price
is developed that is very good for reasonable demand
elasticities and has the appealing form of

Remaining Customers\ */#*" %
Remaining Units :

An advantage of such a form is that it readily can be
taken to data.

The paper then considered the efficient solution
and proves the rather counterintuitive proposition
that monopoly is efficient from a social perspective.
Thus, the usual monopoly distortion—selling too few
units—is not present here, and all of the behavior
usually attributed to monopoly pricing is actually a
consequence of efficient allocation. Efficient alloca-
tion requires high initial prices to preserve the option
of filling later demand, should it arise, and conse-
quently, prices are lower toward the expiration of the
good.

One potential difference between the behavior of a
monopolist and efficient behavior involves the num-
ber of items made available: a monopolist will gener-
ally reduce the quantity to increase the price charged.
In economic language, efficiency requires expected
price equal to marginal cost, whereas a monopo-
list chooses a quantity equating marginal cost and
marginal revenue. The same conclusion applies in the
present model; a monopoly would invest in a smaller
initial capacity than is efficient. (We thank Jim Dana
(1999) for reminding us of this caveat.) With con-
stant elasticity of demand, changes in initial inven-
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tory adjust the prices by a constant scalar. However,
the general conclusion that the pattern of dynamic
pricing is a consequence of efficiency rather than
monopoly obtains; rejecting efficiency requires actu-
ally knowing the marginal cost rather than looking at
the price pattern.

Finally, the choice of customers to delay their pur- -

chases, hoping to obtain a better price, is considered.
It was shown first that if there is a large capacity and
few potential remaining customers, customers get a
lower price on average by delay. Thus, no general
result is going to hold. However, at the prices that
prevail for the average level of inventory, it does not
pay to delay if capacity is lower than the number
of future potential customers. Thus, if customers use

a heuristic 'to determine when to purchase, buying

immediately is not a bad choice because more often
than not it is the right thing to do. Improving on
immediate purchase is going to require a more clever
scheme than, say, “wait until five weeks before the
flight.”

Other authors have noted that, with constant
demand elasticity, inventory enters the optimization
in a multiplicatively separable way. Closest to the cur-
rent analysis is Monahan et al. (2004), which considers
a discrete time dynamic pricing problem with ran-
dom demands. In the current framework, their model
would arise if prices were forced to persist for some
fixed and non-negligible period of time and could not
be dynamically and instantaneously adjusted based
on sales during that time. For example, the price
might be adjusted only at times 0, 1, 2, etc. They then
allow for a random scaling factor in the period: where
the present study posits that A(f) — A(t + 1) is non-
stochastic, Monahan et al. (2004) permit this value to
be a random variable whose distribution is known in
advance. They find the same general form of the value
function, multiplicative in inventory with the power
of one over the elasticity. In addition, they charac-
terize how the shape of the distribution of demand-
scaling factors influences the evolution of the prices
and value functions; these results have no analog in
the present study because A is not random. In con-
trast, they do not consider the social efficiency of
the pricing structure nor the incentives for consumer
search. (Monahan et al. (2004) also endogenize the
initial capacity. Because capacity enters in a multi-
plicatively separable way and the marginal cost of
capacity plays no other role, endogenizing capacity
is straightforward in either model. Notationally, their
b is the elasticity of demand, and hence their m is
(e=1)/e)

There are many unresolved mysteries concerning
airline prices. Perhaps the most difficult thing to
understand is the prevalence of code-shared flights

with dramatically different prices. A price difference
of 20% is not uncommon, in spite of the fact that
the code-shared flights use the same aircraft and thus
offer the same level of inconvenience and discom-
fort. Although some advantage accrues to customers
based on frequent flyer programs, even these are
exchangeable on code-shared flights involving Amer-
ican Airlines and Alaska Air, and yet we observe
substantial difference in fares on such flights. Prod-
ucts that are nearly perfect substitutes sell for dra-
matically different prices, which challenges any the-
ory embodying customer substitution, as, for exam-
ple, in Borenstein and Rose (1994). Although net-
work effects may account for price differences—
one airline offering expensive code-shared flights as
a complement to connecting flights—the price dis-
parity underscores the advantage of search for the -
consumer.

At the present time, there is little information in
the public domain concerning how airline prices
are determined. Does the price for a particular
flight depend on competitors’ prices, overall demand
between the relevant cities, demand for complemen-
tary flights connecting to other cities, or historical
demand on that day of the year? If so, one would
expect substitute flights to have closely correlated
prices, but that is not what we found in McAfee
and te Velde (2006). At this point, the mechanism
determining airline prices is mysterious and merits
continuing investigation because airlines engage in
the most computationally intensive pricing of any
industry. The techniques used by airlines are likely
to be copied elsewhere as the ability of companies to
condition price offers on other considerations grows
with larger databases of customer information and
enhanced processing power.
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