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The inefficiency of allocation mechanisms in the presence of bilateral asymmetric
information is reconsidered in an environment with continuous quantities. The
result of Myerson and Satterthwaite is proved in this environment under the condi-
tion that zero trade is efficient if the highest cost seller (or the lowest value buyer)
appears. In addition, if this condition fails, there may exist mechanisms implement-
ing efficient allocations. The problem of “hidden endowments” is considered, where
any agent may be either a buyer or seller, depending on the realization of the
privately observed information. In this environment, it is often possible to arrange
efficient trades. Ex ante asymmetries, rather than interim asymmetries, tend
to prevent efficient allocations. Journal of Economic Literature Classification
Number: 026. © 1991 Academic Press, Inc.

Myerson and Satterthwaite [14] consider the design of a mechanism to
arrange an efficient allocation, when the valuations of a commodity are
private information. In particular, they consider the environment where an
indivisible unit of a commodity is possessed by a seller who values the item
at s, and a single buyer values the item at ¢, and s and ¢ are known only
to the seller and buyer, respectively. The buyer (seller) views s(z) as being
chosen from some density f(g), and s and ¢ are independently distributed.
Their result is that, if the intersection of the supports of f and g contains
an interval (that is, there is a nontrivial decision of whether to trade or
not), then there is no mechanism which arranges efficient trades and breaks
even on average. _

The Myerson-Satterthwaite result would lead one to believe that efficient
trading in a bilateral asymmetric information environment is not possible,
provided the innocuous “intersecting supports” condition is satisfied.
However, I shall show that the oosm:_os leading to the 56899_:% of
efficient trades is much less innocuous in two variants of the Myerson—
Satterthwaite framework. The variants analyzed are more like the standard

* I thank Philip Reny, Alan Slivinski, an associate editor and an NEOS\Bo:m referee of this
journal for their remarks. c . ;
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textbook demand model (e.g, Alchian and Allen, [1, pp. 24-31]). In
particular, I consider first a model with continuous quantities, so that
sfficiency requires not only a decision of when to trade, as in Myerson—
Satterthwaite, but also a decision of how much to trade.

The condition characterizing implementability of efficient allocations is
reasonably straightforward. Consider the total (social) gains from trade at
the efficient quantity in three different situations. First, the gains from trade
averaged over all types of buyer and seller are denoted GFT. Second, let
GS1 denote the gains from trade when the worst possible type® of seller
occurs, averaged over the buyer types. Finally, let GBO denote the gains
from trade arising when the worst type of buyer occurs, averaged over
seller types. The. efficient quantity can be implemented if and only if
GS1 + GB0 > GFT (Theorem 1).

This leads to a significant insight not readily accessible in the discrete
quantity model. GS1 (GBO) is the largest lump sum payment that can be
extracted from the seller (buyer) independently of type, given that the seller
(buyer) obtains the full gains from trade. Thus, whenever the efficient
quantity can be implemented, the following kind of mechanism will work.
Charge the seller (buyer) the amount GS1 (GBO) as a participation or
entry free. Then offer the complete gains from trade GFT to both buyer
and seller (ie., the seller sells at the buyer’s value and the buyer buys at
the seller’s cost). This makes honest reporting a dominant strategy, and
the mechanism loses exactly the gains from trade GFT (GFT is collected
once and paid out twice on average). This is an incentive compatible,
individually Baocm: mechanism with net revenue of GS1+ GBO—GFT.
Therefore, it is an _EE@BQSQOB of the &m&ﬁ: quantity whenever an
implementation exists.

We can now observe that, as long as the types are not too different, there
will exist an implementation of the efficient quantity. This requires that
trade occur when there is a high cost seller and high value buyer, and when
Eﬁo is a low cost seller and low cost buyer—i.e., even the worst type of
one agent will trade with the best type of the other. This insight was not
available in the indivisible quantity model at all, except in its extreme mosd
if one type did not vary at all (degenerate support).

The second variation considered is even more like the :Sx:uoow: Boa&
in the sense Em: the é&:stm% to pay for an SoHoBoEm_ unit is identified
with the QESZ:EQ cost of giving up a unit. Thus, it is a:aomgoocm_w
determined whether an agent is a buyer or a seller, aocga_cm on price msa
the quantity of Eo mooa m:om% in the mmﬂ: s @o%ammﬂoc

1 The worst type will be unambiguous in the model: higher cost at every quantity:
2 This mechanism requires a banker, or budget breaker. )
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I the model I develop, the hidden endowments model, an agent witt
quasilinear preferences knows his own endowment, but not the other agents
endowments, of a good. Ex ante, before the endowments are realized, the
agents are symmetric. I will characterize the class of preferences in whict
efficient allocations are feasible® for every endowment distribution.

This shows that, when agents are sufficiently ex ante symmetric, the
inefficiency found by Mpyerson and Satterthwaite vanishes. In som
environments, symmetry is unrealistic. For example, it is unlikely that ¢
firm will sell labor to a labor union. On the other hand, there are somx
environments where symmetry is realistic. For example, negotiations or
trade matters between countries may be reasonably modelled as symmetric
On a more mundane level, stamp collectors are often both buyers anc
sellers, depending on their preference for the particular stamp in question.

One other example of interest is the credit cooperative, or rotating saving
and credit association, used in underdeveloped nations.* Individuals (usually
subsistence farmers) in a rural area, without access to other sources of funds
form a cooperative to loan each other money, depending on their curren
demand and supply. These individuals are more or less ex ante symmetric.
and receive information about their current situation and value of funds very
so often (whether such information is private is another matter). The credit
cooperative attempts to implement the efficient allocation of borrowing anc
lending. One may also argue that a credit union in a developed country face:
a similar environment and objective. I am hesistant to take these applications
too seriously, since the assumption of quasilinear preferences is unlikely to be
satisfied in any real world application.

The related literature, on implementing allocations which are efficient o1
maximize a welfare criterion, divides in a natural way into two classes. In
one class, no individual rationality assumption is imposed. This class
studies an environment where agents can be coerced into participating (see,
for example, Groves and Ledyard [7], D’Aspremont and Gerard—Varet
[4], or, more recently, Palfrey and Srivastava [15] and the references
therein). This paper is a member of the second class, which impose an
interim individual rationality constraint. Each agent must willingly agree tc
participate in the game induced by the mechanism after he learns his owr
private information or type. Auction papers fall in this class, for it is
assumed the agent knows his own valuation of the object for sale before he
decides to attend the auction mechanism, and must anticipate nonnegative

3 The mechanisin must satisfy individuality for every realization of the endowment, fo1
without individual rationality, the result is a special case of d’Aspremont and Gerard—Varet

[4].
“See, for example, Ghatak [5] and Von Pischke, Adams, and Donald [18].
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:xpected rents from the: auction for every possible valuation he might
0SSEsS. e L

Since Myerson and Satterthwaite’s theorem, the literature in the second
Jlass has primarily explored mechanisms which are efficient in some sense
sther than ‘ex post. Myerson and Satterthwaite [14] identified the ex ante
Sfficient allocations. Wilson [20] demonstrates the ex ante efficiency, and
sonvergence to ex post efficiency as the number of traders diverges, of
‘he double auction, :and his results were recently extended ~by Gresik
ind Satterthwaite [67]. Several authors have analyzed ex ante efficient
nechanisms when time and discounting have been introduced (e.g., Ausubel
and Deneckere [2]). Linhart, Radner, and Satterthwaite [11] provide a
nice overview of these developments. Spulber [19] considers interim
sfficient mechanisms: ;

With two important exceptions, the literature subsequent to Myerson and
Satterthwaite shares a set of assumptions which includes the -assumption
that there is an ex ante identified buyer and seller; that is, either the seller
sells the buyer a single unit, or no trade occurs. In Cramton, Gibbons,
and Klemperer [3] and in Spulber [19], this assumption is relaxed. In
the continuous quantities model of the present study, trade only flows one
way but the efficient quantity of trade depends on realization’ of private
information. In Spulber, positive quantities are optimal by assumption. In
the hidden endowments model and in Cramton, Gibbons, and Klemperer,
any agent may be a buyer, depending on the realization of types. In all of
these models, ex post efficient trade may be possible. The interpretation of
this development will be explored more fully in the conclusion, but these
papers receive the interpretation that ex ante symmetry permits efficient
exchange, even in the presence of interim asymmetries. S

With agents that are neutral to monetary risks, it matters - generally
whether the mechanism can serve as a budget-breaker or banker which
breaks even on average but may earn money or sustain losses in any par-
ticular realization (ie., ex ante versus ex post budget balance). I shall
presume the existence of a banker in calculating the necessary and sufficient
conditions for implethenting ex post efficiency. However, it should be noted
that if a banker is nécessary, the two trading agents cannot implement the
efficient solution by themselves. In the hidden endowments model; a banker
is unnecessary in the event that-ex post efficient trade is possible. In the
continuous quantities buyer-seller model, the necessity of a banker is not
known.

The next section offers a generalization of Myerson and Satterthwaite
bilateral trade model. The subsequent section develops and analyzes the
hidden endowments model. The final section offers conclusions. =
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: : CONTINUOUS QUANTITIES

Let s be the seller’s private information, and ¢ the buyer’s private infor
mation. As in Myerson—Satterthwaite, both parties are presumed to be risl
neutral in money. The seller has cost c(q,s) of quantity g, while the buye
values quantity g at v(q, ¢). It is assumed that s and ¢ are independently dis
tributed with continuous distribution functions, and thus I may presume
that s and ¢ are uniformly distributed on [0, 1] without loss of generality.
I assume that ¢ is convex nondecreasing in ¢ and v is strictly concave anc
increasing in ¢, and both are twice continuously differentiable. Only non
negative quantities g are allowed. I further assume

(¥s) ¢(0, s) =0, . (1
(V1) (0, £) =0, 2
(Vg>0)(Vs) cplg, 5) =0, 3
(Vg)>0)(V) v, (g, 1) =0, (4

(390) v4(g0, 1) —c,4(q0, 0) <O. (5
Subscripts are used to denote partial derivatives. Define

q*(s, t) = arg max v(q, t) — c(q, $). o (6

0<g¢g

Thus, for g*(s, t) >0,

va(g*(s, 1), ) =c,(q*(s, 1), 8), ~ (7.
q5(s, 1) <0, 8.
and
q¥(s,1)=0.. . )
Define

Gs, 1) =v(g*(s, 1), 1) — c(g*(s, 1), 5)

Conditions (1) and (2) establish that the no trade utility levels are zero
Condition (3) requires that an increase in s increasé marginal cost at all
quantity levels, and thus a “high s” seller is unambiguously a high cost

*To see this, suppose s has cumulative distribution function F. Then F(s) is uniformly dis-
tributed. Thus, letting the private information be F(s) establishes the claim. If F is constani
on an interval, some types may be mapped together, but this arises only if the types that are
not distinguished have probability zero of occurring.
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seller. Similarly, (4) makes the buyer’s marginal valuation increasing in f,
and thus high type buyers have unambiguously greater demand. The strict
soncavity of v, combined with the convexity of ¢, guarantees the maximum
in (6) is unique, and (5) insures ¢* is finite. Note that negative quantities
are not- allowed.® The differentiability assumptions insure that ¢g* is dif-
ferentiable if nonzero and ¢* nonincreasing in s and nondecreasing in #, by
(3) and (4), respectively. G is the gains from- traded associated with any
realization (s, ¢). I.use the following notational conventions. All integrals
range over crossproducts of [0, 1], whose dimension is indicated by the
differential. The arguments (s, ) of g* will be suppressed unless clarity
would suffer. All proofs are contained in the appendix.

By the revelation principle (Harris and Raviv [10], Myerson [13]),
attention may be restricted to mechanisms for arranging trades as follows.
Both parties report their signals to the mechanism, which then dictates
monetary transfers and quantities exchanged. The agents find it optimal to
report their signals honestly (incentive compatibility). By assumption, the
agents expect nonnegative rents from participation (interim individual
rationality). The monetary transfers made need not sum to zero for every
(s, t) pair (that is, the mechanism acts as a budget breaker or risk neutral
banker), but the mechanism must at least break even in expectation. I
restrict attention to mechanisms which are efficient; that is, the quantity
exchanged is g¢*(s, z). Thus, implementability of the efficient quantity
reduces to finding a mechanism satisfying incentive compatibility and
individual rationality, and which provides a nonpositive average transfer.”
The following theorem characterizes the net transfer of any mechanism
implementing the quantity g*

THEOREM 1. The minimum expected transfer of any mechanism
implementing the efficient quantity q* is

en: G(s, 1) ds &TT,? 0) &T?? 1) dt. (10)

Theorem 1 receives the following interpretation. Any mechanism which
implements the efficient quantity provides both buyer and seller with the

61t is this lack Om &:532_@ that Bo:&:aa the msm_wm_m 0m the Eamg endowments model
in the next section.

7Spulber [19] has a related result for a special case of this model, which shows that
efficiency can be obtained if the gains from trade exceed the information rents, or expected
profits, of the agents. Spulber does not observe that the information rents equal the whole
surplus minus a constant, the- constant being the expected surplus associated with the worst
type. The proof relies heavily on efficiency, via Eq. (7), so that the proof technique is uninfor-
mative about implementing other quantity functions.
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entire gains from trade, minus any amount that can be charged as a lumj
sum participation fee that every possible type ‘will pay. This provides ne
revenue to the mechanism €qual to the gains from trade associated with the
worst type of each agent, minus the average gains from trade. If thes
participation charges are sufficiently large relative to the average gain
from trade, then an efficient mechanism exists, and otherwise not.

COROLLARY 2. If ¢*(0,1)>0 and
(Vs) g*(s, 0) =0, A (11
or

(V)g*(1, 1) =0, (1

then & >0, that is, there exists no mechanism inmplementing the efficien
quantity that breaks even on average.

The corollary follows from noting that (11) forces G(s, 0)=0, and tha
G(s, t) = G(1, t) for every ¢, by (3) and (4), with strict inequality for (s,
in a neighborhood of (0, 1). Using (11') is analogous.

This extends the Myerson-Satterthwaite result to the case of continuou
quantities. In the actual Myerson—Satterthwaite result,

v(q, t)=min{qt, t}

and
c(q, s)=min{gs, s}.

Because the differentiability assumptions are not.satisfied for these func
tional forms, the Myerson—Satterthwaite result cannot be taken as a specia
case. In particular, the proof relies on the continuous differentiability of ¢*
The conditions (11) and (11’) play the same role as presuming that th
supports of the densities intersect, as in Myerson and Satterthwaite, sinc
trade occurs at (0, 1) and not at one of (1, ¢) or (s,0). If both (11) anc
(11') hold, the level of subsidy required to achieve efficiency is precisely th
total gains from trade (the expected value of v(g*, t) —c(g*, s)). This ha
the interpretation that each agent expects to receive the total gains fron
trade in order to be induced to honestly reveal his signal.®

8 This parallels a result of Myerson and Satterthwaite: if the supports of the densitie
coincide, any mechanism implementing the efficient quantity must subsidize the agents by th
total gains from trade. Indeed, each agent individually expects to earn the total gains fror
trade, if incentive compatibility and individual rationality are satisfied.
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Theorem 1 allows for efficient exchange to be possible, and I provide an
sxample where efficient exchange is implementable. This is not as trivial as
t might appear, since the mechanism must implement the efficient. ¢*,
S:ow varies as § mba t vary.

ExaMPLE 1.° For a> 1, let ¢(q, s)=sq?, and
(g, 1)=2q— (a—1)q".
[t is easily verified that
g*(s, t)=(a+s—1t)"

and

su:@lwﬂml%&axg

HIDDEN ENDOWMENTS

We now consider an alternative model, in which the agents are ex ante
dentical, and it depends on the realization of the privately observed
nformation whether an agent is to be a buyer or seller. There are n agents
who are risk neutral to monetary gambles. For simplicity, I presume the
private information is the agent’s endowment of a consumption good.
Denote the endowment of agent i by x,. I presume that each agent’s
oreferences are identical and quasilinear in the consumption good and
noney. The preferences can be represented by a strictly concave increasing
‘unction u, which is the monetary value of the consumption good. That is,
‘he agent’s utility is u(c)+ ¢, where ¢ is his consumption of the good and
t is the transfer of money he receives. u is presumed to have a continuous
‘ourth derivative. x,, ..., x, are identically and. independently distributed
-andom variables with a distribution function F(x;), which possesses a
sontinuous density, and I let the support of F’, denoted £2, be contained in
[0, 11].

Efficiency of a mechanism in this 9::35505 reduces to equal sharing
>f the consumption good x, since this equates marginal rates of substitu-
ion. Thus, efficiency is characterized 3\ providing each mmﬁ: with a
juantity g¥ satisfying :

- di |walx o (12)

Jj=1

° Spulber [19] provides an example as well.
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The following notation is convenient:

=

X= Mk: ) L ‘.,

i=1

dF(F)= m dF(x,),

%.%Lv =[] dF(x;),

J#*i

0= % u(X) dF(X). (13

Theorem 3 characterizes the conditions under which an efficient solutio
to this problem is possible. Note that, in an efficient solution, the agent ha
the ability to lie at least locally without threat of detection, since the larges
amount of his endowment x, he will ever be asked to give up i
((n—1)/n)x,. This allows local deviations from nonesty without any issu
of verifiability (as would arise if the mechanism required the agent tc
supply more of the good than he possessed). As it turns out, the desir
to be honest locally around the agent’s true o:aossoa characterize:
incentive 85399:8\ globally.

THEOREM 3. There exists an implementation, with an ex ante balance
budget, of the efficient solution (12) if and only if *° .

iy} (14

Embv?ﬂwﬁlmv dF(X_)>~

If so, there is an implementation with an ex post balanced budget.

Remark. The “if” part of this theorem, in the case of two agents, i
remarkably easy to demonstrate. Define

s(9) = [ w3y +x)) dF(x),

which is the expected direct consumption utility for an agent possessing )
units of the good after trade. The transfer that works has agent 1 pay agen!

!9Tn proving this result, we shall presume F has a continuous density, to éstablish the * oz:
if” part of the proposition. This is the only time this assumption is invoked.
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. the amount s(x,) —s(x;) for 4(x,— x;) units of the good, when (x;, x5)
re the reported endowments, and analogously, agent 2 pays agent 1 the
mount s(x,)—s(x,) for (x; —x,) units. Agent 1’s expected utility, if his
ndowment is x; and he reports y, is.

n(oer, y) = [ Tulry+ 3062 — ) + () = 5(x2)] dF (x2).

It is trivially verified that 7 is maximized at y=x; (see Appendix for
yroof). Thus, individual rationality reduces to

25(x,) — [ s(x,) dF (x;) 2 u(x,)

vhich coincides with (14).

The condition (14) has an interpretation as a statement about preferen-
ses over lotteries. Let X, ..., x,, be identically and independently distributed
-andom variables. Consider first the random variable Z(.y) which is given

Yy

n—1
Z00=2 (345 %),
: i=1 -
ind the second random variable Y(y) which takes on the value y with
srobability 1/n and takes on the value X7_, x;/n with probability
‘(n—1)/n). The condition (14) requires that, knowing y, the agent prefers
‘he random variable N over the random variable Y. Several observations
;an be made. Let u, 0% be Eo mean and variance of x;, Homvoo:,\o_% Then

EZ(y)=E¥(y) =~ [y +(n— D (15)

VAR(Z(»)) uaxL o, : (16)
—1

VAR(Y(p) ="~ [o®+ (¥~ 1)’} (17)

Thus, for any value of y, Z represents the same mean and a lower
variance than Y. It is not generally the case, however, that Z dominates ¥
n the second order stochastic dominance,sense, which is equivalent to
svery risk averse agent preferring Z to Y, which would in turn ensure that
'14) held. Indeed, the situation is somewhat more extreme than this. In the
aext pair of results, I show that Z second-order mﬂoormm:om:% dominates Y
f and only if F is a binomial distribution.



EFFICIENT ALLOCATION

THEOREM 4.  For every distribution F with support Q containing at lec
three points, and for every n>2, there exists a concave u such that (14) fa
for some ye Q.

Theorem 4 required at least three values so that there would be
“middle type.” Intuitively, this comes about so that some type has t!
option of either understating or overstating his endowment, and it
precisely this type that has an incentive not to participate (for some utili
function). However, if there is no middle type, risk aversion is sufficient
guarantee implementability for binomial random variables, as the followir
rather trivial result shows.

LEMMA 5. (14) holds for all two point distributions when n=2 if ar
only if u is concave. ‘

The strategy of placing assumptions on the distribution of types f
guarantee implementability for any concave u does not result in a sati
factory theory. That is, no matter what the distribution of endowmen
(as long as three different endowments are possible), there will be somr
specification of preferences that prevents implementation.!! The strategy «
restricting the class of preferences, however, is a more fruitful path. Ot
first result in this direction is that, no matter what the distribution ¢
endowments, and for all n, if u displays constant absolute risk aversio:
efficient implementation is possible.’> This shows that the class of u
satisfying (14) for all distributions is nontrivial. This special case he
remarkably straightforward proof, since the multiple integrals of utilit
become products of integrals.

THEOREM 6. If u(x)= —e~ %, for a>0, then (14) holds.

For the case of two agents, I have a simple condition equivalent to (14
holding. Define § by:

o(y)=u"(y)/u"(y).

0 is the “prudence” measure for the precautionary savings demanc
analyzed by Kimball [9], and the reader is referred there for an interpreta
tion of 6, which parallels the standard treatment of risk aversion measure:
Intuitively, 6 matters when agents can take ex ante actions to reduce risks

U Indeed, if u(x)=min{x, 0} and x is normally distributed with mean 0, then (14) fail
(at y=0) for every n>2. Thus, even fixing F and u, there cannot be a theorem which state
that (14) holds for » sufficiently large.

12 Note that the set of functions satisfying (14) for any F also includes the less interestin;
class of Tobin utility functions: u(x)=ax — bx?, for b =0, by (15)-(17).
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> that first derivatives of utility determine risk premia. The following
:mma is needed to establish our result for the two agent case.

LEMMA 7. Suppose u is concave. Then o is nondecreasing if and only if,
or all distributions F,

o w(y)= % W (x) dF(x) = u"(y) > % w'(x) dF (x).

This allows us to prove the main result that, if 6 is nondecreasing, then
1ere exists an efficient implementation for the two person ex ante
ymmetric bargaining problem.

THEOREM 8. Suppose n=2 and u is strictly concave. Then § is non-
ecreasing if and only if (14) holds for all distributions F, that is, there
xists an ‘efficient solution to the bargaining problem for all endowment
istributions.

It is worth noting that constant absolute and constant relative Emw
version satisfy § nondecreasing.

For the two agent case, it is possible to implement ex ante efficient
xchange for a reasonably large class of hidden endowment models. The
Ayerson-Satterthwaite result depends heavily on the preferences (which,
iy virtue of the discrete commodity, embody satiation) and the trans-
ctions technology (which generally prohibits equality of marginal rates of
ubstitution). The hidden endowments model alters these assumptions to
e closer to the textbook demand model, wherein efficiency is determined
iy equality of marginal rates of substitution. Thus, ex ante there is no
buyer,” and the realization of endownments or preferences will determine
/ho buys and who sells.

It should be noted that x; need not be interpreted as an endowment, but
1ay merely represent a type, with utility of consumption (g, ¢) represented
y u(x +q)+t, where ¢ is the monetary transfer. The difference from the
terature, in this case, is that negative quantities are permitted, and an
gent who does not wish'to purchase the good at a m:&s price 53\ wish
o supply it. -

We see that. ex post ommo_go% is not as unlikely as the Zv\oamoHT
atterthwaite theorem would lead one to expect.

CONCLUSION

The inability of agents to arrange efficient trades in a world with private
iformation is disturbing. In particular, any mechanism will leave the
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agents with a desire to renegotiate the outcome after the trades dictate
by the mechanism have been made, since generally a suboptimal level «
trading will have occurred. This paper characterizes the class of enviror
ments where implementation is feasible with continuous quantities in tw
models. Implementation is generally feasible with correlated signals, as i
demonstrated in McAfee and Reny [12], under a hazard rate assumptior

This paper reinforces the conclusion of Cramton, Gibbons, and Klen
perer [3], which adopts the Myerson—Satterthwaite framework except the
the initial ownership of the good may be more symmetrically distributec
They show that if the initial (ex ante) distribution is sufficiently symmetric
efficient allocation is possible. In the same way, the hidden endowment
model presented in this paper symmetrizes the agents, in:that any agen
may be a buyer, depending on the realization of private information. Fo
a large class of preferences, ex post efficient allocation is possible.

While this theme, that ex ante asymmetries rather than informationa
asymmetries prohibit efficient allocation, is less clear in the first model, i
is still present. Although the mechanism can not threaten the buyer wit]
providing the good in the efficient allocation, it can threaten him witl
receiving less of the good, smoothing out the exchange relative tc
Myerson—Satterthwaite, and reducing the impact of the ex ante asymmetry

We can view the hidden endowments model as a special case of thi
continuous quantities model with a slightly different constraint. Conside
the case of two agents, and define

g, t)=u(lg+1—t)—u(l—1)
and

c(g, s)=u(l—s)— :.Q —5=q).

Here u is the hidden endowments utility function. This particular functiona
form satisfies the assumptions of the continuous quantities model, and ye
is in the hidden endowments framework (here x;=1—1, x,=1—s, th
reservation utility has been embedded in ¢ and v functions, and g*(s, ) =
1(t—s), or max{0, (z—s)} if trade is permitted to flow one way). Thus, we
can see that efficiency in this special case is not possible if trade only flow:
one way (¢>0),'* and may be possible, depending on u, if trade is allowec
to flow either way. That is, the inefficiency does not spring from asym
metric information, but asymmetric informiation in conjunction with ar
ex ante asymmetry (that g is restricted to be nonnegative). Thus, the mair
conclusion of this paper is that ex ante asymmetries (that one agent i
the buyer and one is the seller), which are not asymmetric information

13 Since g*(s, 0) = ¢*(1, t)=0. Corollary 2 demonstrates this fact.
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ind not interim asymmetries- (the buyer’s and seller’s valuations), which
wre asymmetric information, prevent . efficient trades in the Myerson—

satterthwaite model.

APPENDIX

The following observation is used several times throughout the appendix.
“ believe it was initially obtained by Guesneries and Laffont [8], in a more

seneral version. :

LemMa 0. Suppose an agent of type t who reports r receives profits of
u(r, t) and (0m/or)(t,t)=0, and (0*m/Or Ot)(r, t) =0. Then © is maximized
wer r at r=1.

Proof. (0n/or)(r,t)=0 as t=r, and thus 7 is maximized at r=1¢. [

THEOREM 1. The minimum expected transfer of any mechanism imple-
nenting the efficient quantity q* is

en% G(s, c&&;?? 0) &T?a, 1) dt. (10)
Proof. Consider a buyer with signal ¢ who reports r. His return is
u(r) =max [ v(g*(s, 1), 1) ds— p(r), (A1)

vhere p(r) is his expected payment to the mechanism when he reports r.
ncentive compatibility, with the envelope theorem, implies**

w(0)=[ vilg*(s, 1), 1) ds. (A2)

14 The differentiability of « is proved as follows. Incentive compatibility yields directly

[89(g* (s 0. ) = v(g*(s 1), ) ds _ pl1) = p(r)

t—r t—r

V.:u <a®*Ahw Dv \vchQ*ﬁhu \v, \.v ds
= t—r '

“hus differentiability of p reduces to the differentiability in r of _.w v(g*(s, r), t) ds. Since v and
are assumed twice continuously differentiable ¢* is continuously differentiable except around
he single point s, such that g*(s,, r) =0 and, for s <sg, g*(s, r) > 0. Thus, p is continuously
ifferentiable. The argument shows u is continuously differentiable.
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The expected payment to the mechanism is (using (Al), (A2) and integr:
tion by parts)

Ep=| p(r) ar

P—

TA&* t)ds—u(t) dt
: % ) (1—1)v,(q*, 1) ds di — u(O). A

Since #'(z) =0 (by integrating (4) over ¢ and noting that, v,(0,7)=0t
(2)), individual rationality is equivalent to -

i

u(0)=0. (A

To establish the incentive compatibility of the mechanism in (Al) ar
(A2), note that by (4) and (9) .

mm
or 0t

[ ¥la* (s 1), 1y ds— p(r) = [ v,u(@*(s. 1), 0) g (s, r) ds >0, (A:

Thus, viewing u in (Al) as a function of » and ¢ ?2 taking the maximu
in (A1)), we have

u,(t,1)=0, (A
and

(1, 1) >0, h A
(A6) follows from (A2), and (A5) implies (A7). Lemma 0 implies that u
maximized at r =1, as desired.

Now suppose the mechanism pays the seller who reports r an amoul
w(r) on average. The seller expects

(s) = max w(r) - % e(q*(r, 1), 5).dt. (Al
Thus,

7(s) = — % e.(q*(s, 1), 5) dt. (A"
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rom (A8) and (A9), the expected payment made to the seller is

Ew= ‘ﬁ w(s) ds
— (1) + : c(q*, 5) + sc,(q*, s) dt ds. (A10)

ince 7'(s) <0, from (1), (3), and (A9), individual rationality reduces to
7n(1)=0. (A11)
Incentive compatibility for the seller is established analogously to

A3)—(AS5), using Lemma 0, and noting (8). The net transfer made by the
iechanism is

& =Ew— Ep. (A12)

learly, the minimum transfer occurs when #(0)=7(1)=0. By (7)

d
, NCIN:@*VDHI<+C|D<N+C|3§§*
=—v+{1-t)v,+(1—-1t)c,qf,
& * *
%%@ ,8)=c+sc,+sc,q]

— *
=c+sc,+8V.9;,

thenever g* is differentiable (almost everywhere). Thus, integrating by
arts,

[—v+a=0v,dr=—vig*(5,0,0)~ [ (1=1) c,q¥ di

—~¥(g*(s, 0), 0) + ¢(g*(s, 0), 5)— [ (g™, s)

%a+.€h ds=c(q*(1, 1), :I%%aﬁw ds

=c(g*(1, 1), 1) —v(g*(1, 1), 1) +% v(g*, 1) ds,

here v, ¢ are evaluated at (g*, ¢) and (g%, s), respectively, and g* is
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evaluated at (s, ¢).unless otherwise indicated. By (A3), (A4), (A10), 3:
(A12), and Fubini’s theorem and integration by parts,

Gn:l<+GI:E&&%.T:Q+@§%&
= [ e(a*(s, 0), 5)= v(g*(5, 0),0)— [ e(q*, 5) dt s
+ [ elg* (1, 0, 1) = v(g*(1, 1), 1)+ [ v(g*, 1) ds
,,n@m?:&TF?S&I?F?ma. 1
THEOREM 3. There exists an implementation, with ex ante budg

balance, of the efficient solution (13) if and only if

1
(i 5 (14

. - o1
Af\mmL:ANl%wv dF(X_))=-u(y)+
\ n) n n
If so, there is an implementation s:.& an ex post balanced budget.
Proof. (if) When (14) holds, there is a simple mechanism whic

implements the efficient solution. The mechanism takes reports xi, ..., X, ¢
endowments and assigns the efficient quantity to each,agent. Define

s(9)= [ u(X_,+ yjn) dF (X _).
>,m2; i is asked to pay
Pi(x5 i X,) = M .Ax\v —(n—1)s(x,).

J#Ei

Note that

3. pilxis o ) =0,

i=1

That is, no budget breaker is required. Note as well that agent i’s expecte
payment, conditioned on a report , is

Y(r)=(n—1) ﬁ — [w(X_ +rm) dF (X 1@
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' the agent’s endowment is x; and ‘he reports an endowment of r, he
tpects net utility (over the reservation value u(x;)) of

n—1

-p ?tﬁ.l v dF(X ) —(r)— u(x,)

n

o _ |:|_;{ AleL!:lHxvliwii\‘i dF (X _;)

or n n

mmn :IH |=!H |
= — Nx+ X — dF (X _; )
ax. o p ‘? Axl. — . xv (X_)>0
hus, 7 is pseudoconcave in r and by Lemma 0 is maximized when
n/dr =0, which occurs at r = x,. Given that the agent reports honestly, his
rofits are

aM:%:AM‘V,&WAMLVY:QLIQI: U.

“hus, individual rationality holds if (14) holds, that is, n(x;) =0.

(only if): Consider a mechanism which, without loss of generality,
harges the agent p(r) when he reports an endowment 7. If the mechanism
; efficient, this agent, if his true endowment is x,, expects rents (net of
((x;) obtained by not participating) of

-1 _
n=u Axl x_,-= ; \v AF(X_) —u(x)—p(r).  (A13)
ncentive compatibility forces
n—1 - _
p) = =" [ w(X) dF(X_) (AL4)

ntegrating (A14) by parts, and using Fubini’s theorem, the net payments
o the mechanism are

0<Ep= % p(x,) dF (x)

= p(0)+ [ (1= F(x) p'(x;) dx;

n—1

= p(0)~ " [[ (1= Fx)) w'(X) dx; dF (X _,)

n

=p(0)+ (n—1) [u(X ) dF(X )~ (n—=DT,  (AL5)
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where U is given in (13). Integrating (A14) directly, and using (A15), yield
y , _ c .
P(y)=pO)+ | plx) dx,
_ > Y - -
=p(0)—(n—1) % u AA,NL + MV —uw(X_,)dF(X_). (Al€

Combining .(A13), (A15), and (A16) gives
aC&.ﬂM: % u AM\L+WV &NAM\MLI u(y)—(n— :Q | (AT7

Thus, (A17) with individual rationality,
Vy)  w(y)=0,
implies that (14) holds. §
THEOREM 4. For every distribution F with support Q containing at lea.

three points, and for every n =2, there exists a concave u such that (14) fai
for some ye Q. :

Proof. Let F,(z) be the probability that (1/n) X7_, x;<z. Then tt
. distribution function of Z(y)is :

Einﬁl__ AEV

n—1

Similarly, the distribution function of Y{(y) is

F,(x) if x<y
.QA.XVN : . :
n—1 .

F,(x)+1/n if xzy

n

It is sufficient to prove that H does not dominate G, in the sense of secon
order stochastic dominance (see Rothschild and Stiglitz [16]), that i
there exists a y, such that

ﬁo G(x)— H(x) dx <0.
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“his is equivalent: since the means associated with Z and Y coincide.
“hoose y,= y. Then

%mcﬂTEi% ﬁalfi @LAW[WV%

n—1

- T F,(x)—F,_,(x) “&.

n

“hus, it is sufficient to prove that F, strictly dominates F,_;, in the second
rder stochastic dominance sense, to satisfy Eo inequality. Let v be any
oncave function. Define

Y X

i#j

Y= :IH

Chen, since x; are iid,

Ev A ! =M~ xﬁ.v =F MU_ v(w;)/n
=Ev A W so.\mv

j=1

=FEyv A W xm\xv.

Jj=1

“he inequality holds for every realization of x,, .., x,,, since v is concave.
“he weak inequality stated will be satisfied with strict inequality if y is in
he interior of the support of F, requiring at least three values. §

Lemma 5. (14) holds for all two point distributions when n=2 if and
nly if u is concave.

Proof. Consider a two point distribution on a, b, with probabilities
), 1 — p, respectively. Let ¢ = 3(a+ b). Then (14) reduces to

pu(3(a+ y))+ (1= p)u(3(b+ y))
> ju(y) + 3 [p*u(a) +2p(1 — p) u(c) + (1 — p)*u(b)]
xr y=a, b. Using y=a and collecting terms yields
(1= p)*u(c)>3[(1 = p)*u(a) + (1 - p)*u(b)] (A18)
nd similarly, for y =25,

p*u(c) >3 [ p*u(a) + p*u(b)]. (A19)
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(A18) and (A19) are equivalent to:
u(3(a+b)) >z [ula) +u(b)],

which, with continuity, is in turn equivalent to concavity (see Rudir
[17,p.72]). &

THEOREM 6. If u(x)= —e™*, for a>0, then (14) holds.
Proof. Let .

v

A= % e~ f(x) dx >0,

and
n—1

n

W)= ulyjn + X ) dFE_ )~ uty) =" [u(D dF(D)

f

n—1

— |®\3\\=\&=|H+N|3\\=+ k:.

n

B

(14) is equivalent to (Vy) v(y)=>0. Note that

<\Av\v”m _Hmlpw\xx&lel.mloQH_ )

(A20

2
o ; .._
v'(y) =3 [—e "4" ' +ne”*].

Thus v'(y)=0=v"( y)>0, and any extreme H_uo:: is 4 minimum. Fror
(A20) any extreme point satisfies

A=e"

This yields

1 -1
v(y)=>min v(y) = |\_=+m\_=+=
y

A"=0.
n

LemMMA 7. Suppose u is concave. Then d.is nondecreasing if and only i

w(y)= % w'(x)dF(x)=u"(y) = _ﬂ u”(x) dF (x). (1

Proof of Lemma 7. Let G(x)=F(u'~'(x)). Then

auﬁi QN %Sv.;‘
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Thus, (18) becomes, if A(z) =u"(u' ~!(z)),

h A % z %Ev > % h(z) dG(z).

[his is equivalent to 4 concave, and thus

_ W (2)

0 = \NQANV = 3

since u” <0, we have equivalence of (18) and 6’ >0. [

THEOREM 8. Suppose n=2 and u is strictly concave. Then o is non-
{ecreasing if and only if (14) holds for all distributions F, that is, there exists
wm efficient solution to the bargaining problem.

Proof. (if) It is useful to introduce the following notation:

Mz, y)=u [z + )1 = [ ul (e +x)T dF (x)
Then (14) may be expressed as
o) =3 [ 15 9) P~ 403, 3) |0 (A21)
Lt y* minimize ®. Then
[ w e+ y*)1dF () = (y*) =0,

“his forces
Ay (y*, y*)=0. (A22)
Vote that
Aa(z, p)=5u"(3(z + »)) <O. (A23)
3y Lemma 7, including the value of 3z in x and y, we obtain

Ay (z, y)=0=1(z, y) 20 (A24)
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Define Z by A;(2(»), y) =0. From (A23) and (A24) we have that 7 is non-
decreasing. This yields, by (A23),

Az, »)ZE0  as 27N(2)Zy ,mw@m.mg.

Thus, in particular, since 2( y*) = y* 3\ (A22), A(z, y*) is pseudoconvex
in z, and takes a m_o_um_ BE_EcE mﬁ z= y*. This proves (14) ro_&

P(y)>min &(y) = B(y*) =} % M, y*) dF (x) = 2%, %) >

(only if) Suppose there is a y* satisfying &’( %J.A..o. By Lemma 7,
there is a distribution F such that

w(y*)= ‘ﬁ W (x)dF(x)=u"(y*)< % u"(x) dF (x).

At (p*, y*), 4,1 <0, and thus Z is strictly decreasing. The same argument
as above shows that A(z, y*) takes a strict maximum in z at y*, and thus
d(y*)<0, by (A21). §
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