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EXTRACTING THE SURPLUS IN THE COMMON-VALUE AUCTION

BY R. PRESTON MCAFEE, JOHN MCMILLAN, AND PHILIP J. RENY!

1. SELLING AN ITEM WITH A COMMON VALUE

CONSIDER THE SALE of a unique item with a well-defined true value which no one knows
(like mineral rights). What selling procedure should the owner choose?? The mechanism
we devise takes advantage of the fact that a common-value sale has an efficient outcome
regardless of which of the potential buyers receives the item, since all potential buyers
value the item identically ex post. Thus any mechanism that extracts all the rents must be
optimal for the seller.

We consider the following simple mechanism. After each potential buyer has received
his private signal about the true value of the item and committed himself to participate in
the sale, the seller arbitrarily selects two of them. The seller then asks one, j, to report his
signal, and offers the item to the other, i, for a price 2(s;), where s; is j’s report. Since the
payoffs to all agents are independent of their own actions, this' mechanism is (weakly)
incentive compatible. The mechanism satisfies the individual rationality constraints, i.e.,
the potential buyers are willing to participate, if the price function z is such that they
expect nonnegative rents. In addition, if these rents are zero, the mechanism is optimal
from the seller’s point of view. .

Does such a price function exist? We shall prove that it is always possible for the seller
to extract arbitrarily close to the full expected rents. Moreover, shall we give two sufficient
conditions for exactly all of the expected rents to be extractable. We also give an example
in which the seller can extract almost all, but not all, of the rents. Simple contracts work:
the seller can without loss choose the price function to be a piecewise linear function or a
step function.

To motivate the results, consider a special case. Suppose the bidders can construct
unbiase:i estimates z(s;) of v from their signals s; and that s, is independent of s s given
v. Then'

(1) o= [2(s)f(5;1v) ds;.
The price function 2(s;) extracts all the rents, since

2 E[z(sj)lsi] =E[v]s;].

! We thank Matt Spiegel, two referees, and a coeditor of this journal for comments. McAfee thanks
the U.S. Department of Justice, Antitrust Division, for their hospitality while this research was
completed. McMillan thanks the National Science Foundation for research support.

Most of the literature on the design of optimal selling mechanisms assumes independent private
values; ie., valuations are drawn independently from some distribution H(v) (Harris and Raviv
(1981), Maskin and Riley (1984), Matthews (1983), McAfee and McMillan (1987b), Milgrom (1985),
Riley and Samuelson (1981)). The model of Myerson (1981) is more general than independent private
values in allowing a limited form of correlation among valuations. Crémer and McLean (1985)
showed that with correlated private values (bidder i’s value is of the form v,(s), where s is the vector
of all bidders’ signals) and a finite value space, the seller can extract all of the rents by using a
combination of a lottery plus a Vickrey auction. For a detailed review of this literature, see McAfee
and McMillan (1987a).

* 1t follows that the mechanism is sensitive to the common-value assumption and will not work for
the more general case of affiliated values (Milgrom and Weber (1982)).

4Equation (1) is a Fredholm equation of the first kind. General existence of solutions to such
equations is examined in the mechanism-design context by McAfee and Reny (1988); a particular
case is examined by Melamud and Reichelstein (1986) and Caillaud, Guesnerie, and Rey (1988).
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We shall show that in one sense this example is typical, in that the common-value
environment facilitates rent extraction; but in another sense it oversimplifies the situation,
in that in general the seller can extract almost all, but not necessarily all, of the surplus.

This mechanism suffers from a multiple-equilibrium problem. While agent j cannot do
better than report his value correctly, he is no worse off if he lies: truth-telling is only a
weakly optimal strategy. This can, however, be corrected at arbitrarily small cost to the
principal: agent j can be given a strict incentive to tell the truth. Let § > 0 be small and
consider a revelation game R in which each bidder has a strict incentive to tell the truth
(e.g. the revelation equivalent of a second-price auction). The seller, having received the
reports, uses them in the revelation game R with probability 8, and in the mechanism
described above with probability 1 — 8. This provides a strict incentive for truth-telling, at
a cost to the seller that vanishes as § — 0.

2. RENT EXTRACTION

With the unknown true value of the item denoted by v, suppose that each potential
buyer has received (without cost) a signal s; independently generated from the distribution
F(s;|v). The corresponding density, f(s;|v), is assumed to exist and to be strictly positive
and continuous on [0,1] X [0,1].° Let the uncertainty about v be given by a measure G
with support that is a subset of [0,1]. The seller and all potential buyers are assumed to be
risk neutral.

We assume that, after having observed his signal, been told the selling mechanism, and
agreed to participate, the buyer, /, is committed to pay z(s;) whatever the realization of
the other’s report s;: thus he cannot back out if the price appears to him to be atypically
high. (This is stricter than take-it-or-leave-it pricing; the buyer must take it.) Since,
however, the potential buyers have the option of not participating, the mechanism must
offer them rents that are nonnegative conditional on their own signals. The chosen buyer’s
expected rents, given his signal s;, are

f(s;1v)

dG(v).
A 'f(s;lu) dG ()

@ )= [[o- [ 10 @)

Remarkably, the problem of extracting the rents, that is,
4 (vVs)  7(s)=0,

can be transformed into a minimum-norm problem. Consider the ([0, 1], G) dot product
and norm

9 (%)= [*(0)(0) d6(0); = (xx)"”*
and the set
©  x- {xeLZ(lo,lLG)nazeLZ([o,ll,A), x(0) = ['2(5)1(s10) s

where A is Lebesgue measure, and L2([0,1], A) will be denoted L*()\), and similarly
L*(G) for L2([0,1], G).

S If the support of (- |v) is monotonic in v, the rents can be fully extracted, since the problem of
rent extraction reduces to the solution of a Volterra equation. See Hochstadt (1973).
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LeMMA: 3z € L?(A) satisfying (¥ s;)7(s;) =0 if and only if
7 i -
(M min|x — o]
has a solution.$

PROOF: x is the solution to (7) if and only if (by Theorem 1.4.1 of Balakrishnan (1981,
p- 9), noting X is a linear subspace)

(VieX) (x-v,%)=0 iff (by(5))
(VieX) j(;l(v—x(v))i(v)dG(v)=0 iff (since % € X, (6))
v-seI’(\) jol(v—x(v))jolz(s)f(sw)dgdc;(v)=o iff

(by Fubini’s Theorem, applicable since (v — x(v))2(s) f(s|v) € L}([0,1]%, A X G))

vze’(\) ['5(s) ['(v—x(0))f(sl0) dG(v) ds =0 iff
0 0
(by the Fundamental Lemma of the Calculus of Variations)

ae. s,€[0,1], jol[v—x(u)]f(s,.|v)dc(v)=o iff (by(6) and x € X)

ae. s, €[01], fol[v—folz(s)f(sw) dv]f(s,-]v) dG(v) =0
iff (by continuity of f)
vs e[0,1], fol[v—folz(s)f(sw) ds] f(s;]v) dG(v) =0 iff

Vs €[0,1], 7(s;) =0. Q.E.D.
The main result of the paper is that the seller can always extract almost all of the rents.

THEOREM: V &> 0, 3z € L%(\) such that 7 (s) €[0, €] Vs €[0,1], where 7(s) denotes a
buyer’s expected rent as defined by (3).

The proof has two steps. In the first, a sequence ¢, € X is constructed, with b,
converging to a solution (not necessarily in X) of (7), with X replaced with the closure of
X. There is an associated sequence of profit functions

® A0 = [ (0= 4.())f(ulv) dG(v),

which we prove to be equicontinuous and to converge uniformly to zero. In the second
step, ¢, and A, are used to construct a sequence 2, of price functions, with associated

Sp will be used to denote both the identity function, as in (7), and a dummy of integration, as in

).
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profit functions =,, which satisfy individual rationality and also converge to zero uni-
formly.

PRrOOF: Let X denote the closure of X in L?(G). Clearly, X is a closed linear subspace
of L*(G). Hence, by Theorem 1.4.1 of Balakrishnan (1981, p. 9), (7) has a solution with X
replaced by X. Denote this solution by ¢. Hence, for every x € X, we have (¢ — v, x) =0,
ie.,

(9 /le(v)(¢(v)—v) dG=0 VxeX.

—_ 2 2
Now, since ¢ € X, 3¢, € X such that ¢, 5 ¢ ( 5 denotes convergence in L?*(G)). By the
continuity of the inner product, we have A, (u) = [3 (v — ¢(v))f(u|v) dG for all u, where
A, is given in (8). Let A(u)= [}(v—d(v))f(u|v)dG so that A,(u)—> A(u) for all
u€[0,1).
Putting x(v) = [3z(s)f(s|v) ds in (9) above, we have (for any z € L*()))

a0 [ 1110 6] () d6=0,

or, using Fubini’s Theorem (applicable since z(s)f(s|v)(v — ¢(v)) € I}([0,1]%, A X G)),
1 1

(11) foz(s)[fo(v—¢(v))f(SIv)dG]dc=0,

ie.,

(12) VzeL?*(M), j(;lz(s)A(s) ds=0.

Hence, A(s)=0 ae. In fact A(s)=0 for all s€[0,1] since by definition A(:) is
continuous (by the continuity of f(-| -)). Hence, for all u € [0,1], we have

(13)  4,(0) = ['(v=4(2))/(ul0) 4G~ A(x) =O0.

Since f is continuous and {v — ¢, } is bounded in L?(G), it is easy to show that {4, } is
uniformly bounded and equicontinuous (see Hochstadt (1973, p. 51)). In particular, letting
8, =min, <o 1;4,(u), and recalling that A,(u) — O for all u, we have that §, — 0. Note
that by construction A,(u) + |8,| > 0 for all € [0,1] and all n. Let

|8,

(14)  a=————.
min fO‘f(ulv) dG

(This is well defined since fif(-|v) dG is continuous on [0,1] and has a minimum which
is bounded away from zero since [lf(u|v)dG >0, Vu €[0,1].) Clearly, a, — 0. Define
{2,} € L*(\) as follows: Since {¢,} € X, 3{z,} € L*(A) such that ¢,(v) =
fz,(s)f(s|v) ds for all n. Put 2,(s)=z,(s) — e, for all s€[0,1], and all n.
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We now show that %, is individually rational for every n. Let m, denote the profits
associated with 2,, as given in (3).

(15) vrn(u)'C1>f01(v—-j012,,(s)f(s|v) ds)f(ulv) dG,

where C, = max ff(u|v)dG>0

1

(o- Ol(zn(s)—an)f(SIv)dv)f(ulv) a6

0
- Ol(v— O‘zn(s)f(slv)ds)f(uw) 46 +a, [ f(ulv) dG
L flf(u|v) dG
(v = $,(v)) f(ulv) dG + |8,] —=
0 i 1]-/ f(u|v) dG

>A,(u)+18,| >0.

Hence 2, is individually rational for every n and every u € [0,1].
Finally we must show that for large enough n, 2, extracts an arbitrarily large fraction
2

of the surplus. First, observe that [12,(s)f(s| - ) ds 5 ¢ since [32,(s)f(s|v) ds = ¢,(v) — a,
Vn, v. Denoting f22,(s)f(s|v) ds by é,(v) we then have §, = ¢ so that

f(ulv)
Jof (ulv) dG”

m,(u) - fl( v—¢(v))h(u,v) dG  (by continuity of the inner product)
0

(16) ﬂ"(u)=[01(u—$n(v))h(u,v)dc, where h(u,v) =

=0 forevery u€[0,1] (since A(u) =0 for every u € [0,1]).

Moreover, since {&,} is clearly bounded and h(-,-) is continuous, we have {=,} is a
uniformly bounded and equicontinuous family. Hence =,(u) — 0 uniformly, i.e., (Ve > 0)
(AN) such that Vn> N, Vu<€[0,1], |m,(u)| <e Since, from (14), =,(u) >0, we have
0 < m,(u) <, as desired. Q.E.D.

By Theorem 1.4.1 of Balakrishnan (1981, p. 9), a solution to (7) exists if X is closed.
Note that if the minimized value of the norm in (7) is zero then there is a trivial
rent-extraction problem, as described in the introduction (equation (1)). The more remark-
able result is that even if the minimum norm is not zero (i.e. there does not exist an
unbiased estimate z(s;) of v) but merely a solution to (7) exists, then there is still a
mechanism that extracts exactly all of the rents. In Examples 1 and 2, we give two
sufficient conditions for X to be closed, so that X = X, and hence for the rents to be fully
extractable.

ExampiE 1: If

7 f(slo) = ¥ a(s)b(v),

i=1

then 3z € L?(\) satisfying (4).
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PROOF: Viewed as an integral operator on L*(G), f(s|v) =X"_,a,(s)b,(v) is degener
ate, and hence by an obvious modification of Theorem 12 of Hochstadt (1973, p. 60
(modifying from L?(A) to L?(G)), X is finite dimensional. Since X is hence a finite:

dimensional linear subspace of a normed linear space (namely L?(G)), Theorem 4.3.2 o
Friedman (1970, p. 132) shows that X is closed. Q.E.D

ExXAMPLE 2: If G has finite support, then 3z € L*()) satisfying (4).

PROOF: Let

(18) X= {x ER"|x; = j:z(s)f(ﬂv,) ds for some z € LZ(A)},

where
suppG = {v,,0,,...,0,},
i
G(Ul)= Z Qs and
(19) k=1

m
a, >0 Vk and Y o =1
k=1

In this case, the norm defined in (5) reduces to ||x|| = 7 ,a;x2)'/%, Vx € R™. Since X is
clearly a finite-dimensional linear subspace of R™, (X, |||D is a finite-dimensional normed
linear subspace and X is therefore closed. Q.E.D.

Finally, we give an example showing that, under the hypotheses of the theorem, no
stronger result exists.There are cases in which full rent extraction is impossible; the best
the seller can do, using this type of mechanism, is to extract almost all the rents.

EXAMPLE 3: Suppose that

1 1 = ( sin ks sin kv + cos ks cos kv
f(slv)=-2—'ﬂ+?k§1( e )
so that f: [—m, w] X[—=,m] = R, is continuous and strictly positive and

[ f(siv)ds=1 forall ve[-m,n].

Further suppose that

1

—— e —
g(v) =1 2> o<l

0, otherwise.

Then full rent extraction is impossible using the mechanism of the theorem.
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PRrROOF: Since

@ [ 1=,

(b) [7 7K sin ksf(sv) ds = sin ko,
(c) f" m2k? cos ksf(s|v) ds = cos kv,
we have:

{1,sin x,cos x,sin2x,cos 2x,... } C X,

where L2()\) is now used to denote L?>([—, «], A), and
X= {xe L2(M)|x(v) = f" z(s) f(s|v) ds for some z € LZ(A)}.

Hence, X = L*()), so that v € X; i.e. argmin . %||x — v||=v. On the other hand, v & X
(shown below) so that min, . y||x — v|| has no solution (in X). Since our rent extraction
problem is equivalent to this minimum-norm problem, this implies that the seller cannot
extract all of the rents.

It remains to show that v & X. For this, note that, viewed as an integral operator,
f(-|-) is compact and self-adjoint. Hence if {¢,}?2, denotes an orthonormal set of
eigenfunctions of f(-|-) and {p, }?2, denotes the set of corresponding eigenvalues with
[#ol = |#y| = |p2| > ..., then by Picard’s Theorem (Hochstadt (1973, p. 108)), ve X
implies

2
s .
z |(U,¢2),)| < o0
i=0 K

Now, corresponding to f(-| -) we have

1 sinv cosv sin2v cos2v }
b

@)z T

and py=1,
1 4
RN (i+1)2 (i=1,3,5,...),
B =
Zt/_ .jz (i=2,4,6,...),
Ll S}
so that
. 2 2
Z |(U,¢,»)| - z I(v’¢i)|
i=0 T i odd w
(_1)k+12ﬁ 2
3

>

k=1 1 g
ﬂz/;kz
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where the first equality appears since (", v¢,(v)dv=0 for all i=0,2,4,..., and the
second equality is justified since

(_1)(i+1)/2+12¢;

f_"ﬂvtb,»(v) dv = T forall i=1,3,5,...
=)
(the change of variable k = (i + 1) /2 was also employed). Hence,
Z [CX3I1N 4 62 .
i=0 ﬁ":
which clearly diverges. We conclude that v & X, as required. Q.E.D.

3. CONCLUSION AND EXTENSIONS

We have shown that, for the sale of an item with an unknown common value, the seller
can always extract almost all of the rents. In particular, if an optimal auction exists it
extracts all of the buyer’s surplus. The seller extracts exactly all of the rents if either there
is a finite number of possible values of the item, or the density function of signals
conditional on true value satisfies a separability condition. We also illustrated, however,
that with the mechanism used here full rent extraction is not always possible.

We note that the results continue to hold if a vector of characteristics (¢;,- -, ¢,,)
determines the common value v (i.e., v(¢, - +,¢,)), Where G now denotes the joint
measure over ¢ = (¢, * -, ¢,) With support [0,1]". In addition, each bidder may receive a
vector of signals s = (sy,- - -, 5,,). The mechanism works as before, except now when called
upon a potential buyer reports his entire vector of signals. In this case, a potential buyer’s
rent as a function of signals is:

(20) w‘s) = f{o’l]m[v(c) - j[.o‘umz(u) f(ulc) gu] f(s|c) dG(c) /
f{o‘umf(SIu) dG(u).

The functional form in the statement of Example 1 now becomes L7, a;(s)b;(c).
If in all the above we replace X by

X = {x € [*(G)|x(v) = le(s)f(slv) ds for some z € Z},

where Z is either the set of piecewise linear functions on [0, 1], or the set of step functions
on [0,1], the proofs go through verbatim. Hence in all cases the price function that the
seller announces in advance can be a relatively simple function.

Three further extensions of the analysis are possible. First, if the seller himself draws a
signal from the same distribution as the potential buyers, he need not use the report of the
second potential buyer. Instead, he could make the price a function of his own signal, and
proceed exactly as above, provided he can credibly commit not to misrepresent his signal.
Second, if the seller has m units of the good and each potential buyer wants one unit, the
seller optimally chooses m buyers at random and charges each of them z(s;). Third, 7 the n
bidders’ conditional densities need not be identical. One generalization requires only that
there exist two bidders, say i and j, with conditional densities satisfying f;(s|v)=
a(s) f;(b(s)|v), where a(s) is bounded away from zero and b'(s) > 0 on [0,1], and b takes
[0,1] onto [0,1].

7 We thank Matt Spiegel for this observation.
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The mechanism examined here superficially resembles the Vickrey auction, as the price
paid by the buyer depends upon another potential buyer’s report. However, the Vickrey
auction is not optimal in the common-value case. (Milgrom and Weber (1982) show it is
dominated by the English auction.) The essential difference between the mechanism
analyzed here and the Vickrey auction is that, in the former, the two bidders are chosen
arbitrarily. In contrast, in the latter, the bidders making the highest and second-highest
reports are chosen; and the bidders’ knowledge of this prevents the full extraction of the

surplus.®
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