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Joint search occurs when a buyer incurs a single cost to observe prices of several
different goods. If the prices are drawn from a known joint distribution function,
the optimal sequential strategy with no recall uses a reservation sum for any subset
of items. When the observed prices total more than the corresponding reservation
sum, not all goods will be bought and search continues for items not purchased.
Thus, regions in the price space are associated with various buy-search decisions.
The reservation sums, however, have properties analogous to those of the reser-
vation price with search for one good. Journal of Economic Literature
Classification Number: 026.

1. INTRODUCTION

In a recent paper, Burdett and Malueg [2] pose the following problem.
Suppose an individual planning to buy grocery products has a list of goods
(n>2) to be purchased There are many stores at which all the goods are
sold. The individual can visit a store at a cost and get an n-vector of prices,
one price for each of the n goods. If each price vector observed can be
viewed as a random draw from a known non-degenerate distribution, what
search strategy minimizes the expected cost of purchasing the n goods?

- They consider two cases: free recall and no recall. With free recall, there is
no cost in going back to a store already visited. In that case, nothing is

* We are indebted to an anonymous referee for helpful suggestions for simplifying our
presentation and in particular for the proof of Theorem 3, which is much simpler than our
original proof.
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Fic. 1. Regions of price space corresponding to various buy-search decisions for two
goods.

purchased until search is terminated. Then the individual returns costlessly to
the stores which offer each of the goods at the lowest price observed. This is
the case analyzed in much greater detail and yet, of the two cases
considered, it seems to be less descriptive of how individuals actually shop
for grocery products.

In the case of no recall, the individual has to decide whether to buy
particular items while at each of the stores visited. Each decision
corresponds to a region of the price space. If not all goods. are bought,
search is continued for the remaining items. Burdett and Malueg end their
analysis of the no-recall case by characterizing the decision rule for 2 goods.

Figure 1 depicts. the decision rule that Burdett and Malueg present for the
two-good no-recall case in which a shopper has already drawn a price obser-
vation p, and p, at a cost ¢." The decision whether to buy both goods, buy

! The same figure shows up in a paper by Adams and Yellen [1] on commodity bundling
by a monopolist. They posit a distribution of reservation prices by buyers for each of two
products. In mixed bundling the firm offers each good separately for pjf and both together for
Py < p¥ + p¥. This partitions the buyers and is the strategy employed by the firm if it results
in greater profits than pure bundling or simple monopoly pricing.
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only one good, or buy neither depends on where the price observation lies
relative to the reservation prices that a consumer would set if searching for
each good alone at a cost ¢ per observation (i.e., pi* and p¥) and relative to
S,, which we shall call the reservation sum. The consumer makes the
decision that results in the least additional expected cost. For example, in
region A, where both goods are purchased, p, + p, is less than the
additional expected cost of any of the other three actions. A draw in A » calls
for the purchase of neither good and continue searching for both; in the
region A, the optimal strategy is to buy good i and continue searching for the
other good. The term joint search means that the cost of search is incurred
jointly for a set of goods.

We shall extend the analysis of the no-recall case to any number of goods.
In a model of joint search with a large number of goods, the consumer’s
decision rule appears to be quite complex. With J goods, there are 2’ regions
in the price space, each of which is associated with a different buy-search
decision in terms of individual items.

The overall problem, however, is similar to the one-good search model.
For every subset of items, there is reservation sum. Search will terminate if
and only if the observed price vector falls within the reservation sum for
every subset of items, such as the 4, region pictured in Fig. 1 for two goods.
With three goods there are seven boundaries to consider: an overall reser-
vation sum, a reservation sum for any pair of goods, and a reservation price
for each of the three goods. If any boundary is exceeded, search continues.
And yet the outer plane (or hyperplane), i.e., the reservation sum for three
goods (or for J goods), cuts any price axis at a value S, that also equals the
total expected cost of searching for and buying all three (or all J) goods.

If, after visiting a store, the consumer chooses to purchase a subset of
items, then the decision rule for the remaining subset has the same
reservation-sum form with all the same boundaries on the new 4, but within
a reduced price space. The actual prices paid, once search has terminated,
will all lie within the original 4, region.

The theorems proved in the next section relate to the decision rules for any
number J of goods. Theorem 1 demonstrates that each of the 2’ regions in
price space, corresponding to each possible buy-search decision, is a convex
set of prices. Theorem 2 shows the relationship between the total expected
number of searches, the probabilities of drawing a price set in each region,
and the expected number of searches for items not yet purchased.

Let ¢ denote the cost of drawing a set of prices and let S, (c) denote the
total expected cost of purchasing and searching

S,(c)=Ep,(c)+ cEn,(c) @)

where Ep (c) is the expected cost of purchasing all J items and En_(c) is the
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expected number of draws. If there is a change in c, the effect on the total
cost is

oS
= =F 0 2
o= En,,> @
This is proved in Theorem 3.
Taking second derivatives
oS O0En
W __ w O 3
oc* 2c < ®)

This inequality is proved in Theorem 4.

As in the one-good case, an increase in ¢ lowers the expected amount of
search and raises the total expected cost. In addition, as c¢ varies, there is a
negative tradeoff between the expected purchase cost of the goods and the
expected amount of search. The tradeoff becomes less steep at a higher level
of expected search. In other words, as in one-good search models, there are
positive and diminishing gains to the expected amount of search. Empirical
tests of these predictions are reported in Carlson and Gieseke [3].2

Thus, in several important respects, a bundle of goods subject to joint
search may be treated as if it were one good.

2. THE GENERAL CASE WITH No RECALL

Suppose there are J goods, where J may be any positive integer. Define the
set @ = {1,..,J}. For any subset a & w, the complement of a will be
denoted @. Let S, = minimum expected total cost of purchasing goods in a.
Note that S, =0. ,

Given a price observation p= (p;,..., p;), the expected cost associated
with buying the subset o and continuing search in an optimal fashion for the
subset @ is ) ., P; + S5. Let

A,=

—~———

pGRiI(VySw)<pr+S,;<pr+57)§ (4)

ica iey

4, is the region of the price space in which the least-cost strategy is to buy
the set a and plan to look elsewhere for the remaining items. This is

? These relationships can be seen by first differentiating both sides of (1) with respect to c:
0S,,/dc = 9Ep,,/dc + c(OEn,/oc) + En,,. Note from (2) that S, /dc=FEn, so that
(+) 9Ep,,/0En, = (0Ep,/oc)/(OEn,/oc)=—c <0.  Taking the second derivative:
(+x) &’Ep,,/0En’, = (8(9Ep,,/OEn,,)/dc)/(OEn, Joc) = —1/(0En,Joc) >0 since by  (3),
0En,/dc < 0. Carlson and Gieseke using proxies for Ep,, and En_, from panel data on grocery
purchases find strong support for () and marginally significant support for (**).
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illustrated in Fig. 1 for the two-good case, with w = {1, 2}. The following
theorem indicates a feature of these subspaces that follows from their
definition in (4).
THEOREM 1. A, is a convex subset of R’ .
Proof. Suppose p°, p' € A,,. Then for all y < w,
2P HS;< Y PS8y Y pi+Sz< Y pi+ S,
iea i€y iea iey

Thus, if 1 € [0, 1]

3 Gt + (1= 2)p) + 5= (iezap?wa) +(1-2)( X pl+ )

<4 (2 p?+Sy)+(1—A)<Z p,-l-I-S?)
iey iey

=3 Gpb+ (1-2)p) + S,

iey
Therefore Ap® + (1 —A)p' €4,, so0 4, is convex. Q.E.D.

Define the measure dF over R’ by [ 4(p) f(p)dp = [ h(p) dF for any h:
R’ > R, where f(p) is the density function of p € R’ and f'is assumed to be
continuous. Define the probability of a price observation in 4, by

Bu=| dF

Let En, =expected number of draws to purchase set a using the optimal
policy and Ep, = expected payment for purchasing set a. For the null set,

Ep,=En,=0.
THEOREM 2. En,=(1—0,)""(1+ X, 0B Enz).
Proof. Evidently, En, =3, B,(1+Enz). But 3, B.=1,so

En,= > B.Eng+pB,En,+1

d+a

Thus,
En,=(1—8,)" ( S B Eng+ 1). QED.

PFa

For example, with two goods:

En, = (1+B,En, + B,En,)/(1 ~ﬂ¢)
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This can be explained intuitively. 8, is the probability of not buying anything
on. a particular draw. Thus, the expected number of searches until at least
one good is purchased is 1/(1 —f,). The proportion of the time that only
good 1 is purchased first is §,/(1 —f,) and the expected number of
additional searches for good 2 is En,. A similar explanation holds for the
term B, En,/(1 —§,).

THEOREM 3. Iffis continuous, then 0S,/oc exists and 0S,/0c =En,,.

Proof. For any c and ¢’
S,(c")<Ep,(c)+ c'En,(c) (5)

since the right-hand side of (5) is the expected cost of using the optimal
search strategy for search costs ¢ but when search costs are actually ¢’. Then
add and subtract cEn,(c) on the right-hand side of (5) and use (1) to get

S,(€) < 8,(€) + (¢" —¢) En,(c) (6)

By a similar argument

S,(€) <S8, (¢") = (¢' —c) En,(c') ™

Assume, without loss of generality, that ¢’ > ¢. Then from (6) and (7)

Enye) <2700 o)

Since 4, changes continuously with ¢ (and hence so does 8,), En (c')—
En,(c) as ¢’ - c. Therefore 0S_/0c = En,,. Q.E.D.

Note that (6) also establishes that S (c) is concave in ¢, since it is
supported by a linear function with slope En_(c). It remains to show that
En_(c) is differentiable with a strictly negative derivative.

LemMmA 1. If fis continuous, then dEn_/dc exists.

Progf. Recall that S_(c) is differentiable and 4, is defined by ;. p, +
Sz =2ie, Pi + S;hyperplanes. It follows that

0
a5 La f(x)dx

exists for any continous f. See Sagan [4, p. 542]. By Stokes’ theorem, then

B, _ < S, aj .
dc ycwdcﬁS
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exists. Consequently, En_, is differentiable for « L . In view of Theorem 2,
then, En, is dlfferentlable Q.E.D.

The value of 98,/dc is given By the value of f on the borders of A, times
the differential directed magnitude of change in the borders. In the followmg,
we consider the derivatives on each border of 4. Denote this

Bo _ < 9B,
e Z ac

¢ Vaadod

®)

Bay

where B,,,= A4, M4, is the border between 4, and 4 »
LEMMA 2.

En <O0.

A ,
* dc oc

+En7

Bay

Bay

Proof. By definition, for p € B,,

ZP;"*’S&:ZP:'!‘S?

iea iey

Then p will be in the interior of A, after an infinitesimal increase in c if and
only if

3S3/9c > 8S,/oc

or, equivalently by Theorem 3,

Enz > En; )
Assuming that (9) is true:
, %,
dc Bay/ ’ oc g,
and, without loss of generality,
7 3 7
En——ag— +En7—'31 'B +En7—ﬁl
Bay oc Bay re By 0 Bay
17
EnY_M =0.  QED.
dc B

ay

An interesting implication of the proof is that the effect of incrementing c is

unequivocally to induce the buyer to shift away from high search areas at
each border.
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LemMa 3.

17 o1 —
z _/EEEn& < En, .L_M .
aze OC oc
Proof.
9 0
> —'B—”Ena + En,, %
aze OC oc
9P
=N Laepy_
Z ac
- Z Z -_ Ena
a y¥a Bay
= Z Z En;
Yy aFy B, ay
ap L
Z > Enz + —8—1 En;| the ; because each border
y a*y Boy € 1By is counted twice
<0 byLemma 2.
Thus, as o8 P :
]
_ e~ (1-8)),
dc oc (=4,
a(1 —
Z %a —2Enz< En, X 'B“’) Q.E.D.
ac ac

aF ¢
Let supp f = {p|f(p) > O}.
THEOREM 4. If there exist a, y such that supp f N B, # ¢, then

&S, _0En,
ot e

Proof. By induction. Suppose acw (a# w) implies 90En,/dc < 0.
Known for a = {1}.

En,=(1-8,)" [1 + > ,BaEna]

P+
<9E a(1 — B
Yo —(1-p,)" l ( gaﬁa a +§a En]
<U-B)" Y B aE” <0  (by Lemma 3)

b+a (by induction hypothesis). -
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Inspection of the lemmas reveals that equality holds if and only if the
evaluation of f on B,, is zero almost everywhere. In particular, if f is
continuous, then equality holds only if f'is zero on all boundaries. Q.E.D.
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