120 YEON-KOO CHE and AN GALE

Maskin, E. 1992. “Auctions and Privatization.” In Privatization, edited by H. Siebert.
Institut fiir Weltwirtschaft an der Universitit Kiel.

Milgrom, P.R., and R. J. Weber. 1982. “A Theory of Auctions and Competitive Bidding.”
Econometrica 50:1089-1122.

Milgrom, P. R., and C. Shannon. 1994. “Monotone Comparative Statics.” Econometrica
62:157-180.

McMillan, J. 1994, “Selling Spectrum Rights.” Journal of Economic Perspectives
8:145-162.

Pitchik, C., and A. Schotter. 1988. Perfect Equilibria in Budget-Constrained Sequential
Auctions: An Experimental Study.” Rand Journal of Economics 19:363-388.

Riley, J., and W. Samuelson. 1981. “Optimal Auctions.” American Economic Review
71:381-392.

Sen, A. 1995. “On Seller Financing of Consumer Durables.” Mimeo, University of
Maryland.

Zeldes, S. 1989. “Consumption and Liquidity Constraints: An Empirical Investigation.”
Journal of Political Economy 97:1196—1216.

MATCHING AND EXPECTATIONS IN
A MARKET WITH HETEROGENEOUS
AGENTS

Xiaohua Lu and R. Preston McAfee

ABSTRACT

Most existing models of decentralized markets either assume homogencous agents
or heterogeneous buyers and homogeneous sellers. In contrast, we examine the
environment where both buyers and sellers are of continuums of types. With
sequential random matching and bargaining, as might arise in a housing market,
the expected utilities of all agents are endogenous. Thus, the types of agents that
trade are determined by the equilibrium. For each buyer (scller), the set of seller
(buyer) types for which trade occurs is an interval. Equilibrium prices vary with
the matched agents’ types. We compute the probability of trade and show that
“middle” types have the highest probability of successful trade. Some comparative
statics are conducted. The predictions are intuitive, for example, an increase in the
probability of buyers of having a match would increase (decrease) the expected
utilities of all types of buyers (sellers). We also establish a nonsteady state
simulation model to study the effect of a uniform shock in demand (supply). A
particularly interesting result is that transitory shocks may cause oscillations in
prices, quantity traded, and the stock of types of agents in the market. Morcover,
uniform shocks affect different types of agents differently.
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. INTRODUCTION

A housing market has four characteristics that make it distinguishable
from the traditionally modeled market. First, sellers have unique goods:
no two houses are exactly alike. Second, the market is geographically
dispersed, as buyers typically visit the sellers’ houses. Third, after a
single transaction, sellers tend to exit the market (or become buyers),
Fourth, the transaction price is usually determined through bilateral
negotiation or bargaining.! Although motivated by the housing market,
the model developed is applicable to other markets with two-sided
heterogeneity.

Such a market is sometimes modeled as a pair-wise random matching
and bargaining process. The basic structure of this type of the model is
as follows. There are two types of agents in the market, the buyer and
the seller. Each agent intends to buy or sell exactly one unit of an
indivisible commodity. In each period, each agent randomly matches
with an agent from the opposite party. Once two agents meet, they
bargain over the terms of the transaction. If an agreement is reached, a
trade will take place and the agents involved in the trade will leave the
market. If no agreement is reached, each will wait for a possible trade
during the next period. We follow this basic framework and assume that
all agents in the market have identical expectations on the division of the
gain from trade in bargaining.

Most existing models of this type either assume homogeneous agents
(Diamond and Maskin, 1979; Rubinstein and Wolinsky, 1985) or hetero-
geneous buyers and homogeneous sellers (McAfee, 1993; Peters, 1993;
Wolinsky, 1988). In contrast, we assume that both buyers and sellers are
heterogeneous and have distinguishable continuum of types.?

With sequential random matching and bargaining, the expected utili-
ties of all agents are endogenous. Thus, the types of agents that trade with
each other are endogenous. We show that the equilibrium matching exists
and is unique (in steady state). At the equilibrium, we demonstrate that
for each buyer (seller), the set of seller (buyer) types for which trade
occurs is an interval. If a buyer (seller) matches with a seller (buyer)
whose type is either too “low” or too “high,” both would prefer to wait
for the next period. This is intuitive: a buyer in the market for a given
quality of house will not purchase one much worse, nor is the buyer
willing to pay enough to buy one too much better. We show that the
“middle” type agents have the broadest trade interval, and consequently
the highest probability of successful trade. For each type of agents a best
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match exists. Lower type buyers prefer to match with lower type sellers;
higher type buyers prefer to match with higher type sellers, and vice
versa. Equilibrium prices vary with the matched agents’ types. For a
buyer, a higher quality house always means a higher price, but for a seller,
a higher type buyer may bring him a lower price.

Comparative statics are conducted with respect to the probability of
having a match, the common belief on the division of the gain from trade
in bargaining, and the discount factor between two sequential periods.
The predictions are perceptive. For example, an increase in the prob-
ability of buyers having a match would increase the expected utilities of
all types of the buyers and decrease the expected utilities of all types of
the sellers.

Away from the steady state, the dynamics of the system are enor-
mously complicated, and we resort to simulation to analyze the effects
of a temporary uniform surge in demand on the prices, the quantity traded
of different types of houses, and the stock distributions of the types of
the agents in the market. A particularly interesting feature of our finding
is that a temporary increase in demand may cause oscillations in the
prices, the quantity traded, and the stock of the types of the agents in the
market. Moreover, a uniform shock in demand affects different types of
agents differently. While the lower type buyers turns out to be the biggest
losers, the lower type sellers will gain relatively the most, the middle
type the second, and the higher type the least.

The papet contributes to the literature on price formation that explores
the determinants of transactions prices in a decentralized setting. Much
of the recent literature focuses on the choice of institution in determining
price (e.g., McAfee, 1993; Peters, 1993). Should a seller post a price,
hold an auction, or bargain with buyers? The literature on endogenous
transaction methods grew out of an earlier literature in which the trans-
action institution was taken as exogenous (e.g., Diamond and Maskin,
1979; Rubinstein and Wolinsky, 1985 assume bilateral bargaining;
Wolinsky, 1988 assumes sellers hold auctions). Due to the complexity of
the analysis, the literature has focused on either identical agents, or
one-sided asymmetries and usually identical sellers and differentiated
buyers. In contrast, we examine two-sided differentiation, so that both
buyers and sellers vary in type. While not permitting institutional choice
in the present study, we view endogenizing the transaction institution as
the logical next step.

The most closely related model to the present study is that of Baye
and Cosimano (1990) which studies a matching market not unlike the
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present study. The major differences are that Baye and Cosimano study
a one-shot framework, while we study a repeated framework, and Baye
and Cosimano generalize to endogenize participation by all agents,
where our agents lack a nonparticipation option. The repeated nature of
the game studied here implies agents have an endogenous value of not
trading.

The paper is organized as follows. In Section II the general dynamic
model for a decentralized market with heterogeneous buyers and sellers
is presented. In Section I11 the steady-state equilibrium model is analyzed
and some comparative statics are conducted. In Section IV we introduce
a nonsteady state simulation model and investigate the effects of a shock
in demand. In Section V we present our conclusions.

. THE MODEL

Consider a market in which each seller has a nondivisible good to sell
and each buyer seeks to buy one and only one unit of the good. Both the
buyers and the sellers are heterogeneous from a continuum of types. The
sellers are classified by the values of their goods for sale. If a seller has
a higher quality good for sale, then he is a higher type selier. The buyers
are sorted by their ability to utilize houses. If a buyer can gain higher
satisfaction from consuming a house, he is a higher type buyer. We use
s to index the types of the sellers and b to index the types of the buyers,
where s €[0,1] and b €[0,1].

Time is discrete t = 1,2, 3, ... . In each period ¢ the buyers and the
sellers are randomly matched in pairs. There are three possible outcomes
for an agent under such a match. First, he matches with no one. In this
occasion, he has to wait for a possible match next period. Second, he
does find a match but the gain from trade is negative. When this happens
no trade will take place since at any price there is at least one agent who
will be better off to wait for the next period. Third, the match results in
nonnegative gain from trade. Only in this case, bargaining between the
buyer and the seller on the terms of the transaction occurs, and a trade
will take place. Once a trade is completed both the buyer and the seller
involved in the trade leave the market. Next, a fraction of the remaining
buyers and sellers is terminated exogenously,’ and the rest of the agents
wait for an opportunity next period. Subsequently, new buyers and sellers
join the market and the process continues. It is assumed that the buyers
and the sellers have the same discount factor over the value one period
ahead.

p——
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We assume bargaining shares the gain from trade according to the
generalized Nash bargaining solution, with the share 8, (8,) of the gains
from trade accruing to the buyer (seller). While this assumption is made
for convenience, it is justified by Rubinstein’s (1982) model. The out-
come of Rubinstein and Wolinsky’s (1985) model also comes in this
form., where 0, and 0_ depend on the ratio of buyers and sellers in the
market. Note 6, + 0, = 1.

Assume that the utility of a type b buyer from consuming a type s
house in all periods is bs.* By this assumption either the higher the quality
of the house or the ability of the buyer to utilize a house, the higher the
buyer’s consumption value of the house will be. There are two sources
of discounting in the model: pure time preference and the probability of
termination. These two sources affect agents identically, and we denote
the overall discount factor by 5. We use U'(b) and V(s) to represent the
expected utilities for a type b buyer and a type s seller in period ¢. By
employing these notations, the gain from trade whena type bbuyer meets
with a type s seller can be expressed as

T(b,s) = bs — SU™(b) — SV 1(s). (H

If a buyer matches with a seller but T'(b,s) < 0, no trade will take place.
If T'(b,s) 2 0, a trade will occur and the price will be

Pi(b,s) =8V \(s) + BT (b,s). )

To describe the expected utilities for all types of the buyers and the
sellers, we define fi(s) and g'(b) as the density functions of the sellers’
type and buyers’ type. It is assumed that f*(s) >0 when s €(0,1) and
g'(b)>0 when b €(0,1). We use p, (0 <p,<1) and p; (0 <p <1) to
denote respectively the probability of having a match for a buyer and a
seller. Then, the expected utility of a type b buyer in each period s emerges
as:

U'(b) = (1 - pp8U™(b) + pi1 — FH(a(0))SU"! ()
+p} ] (bs = P f15)ds, )
o(b)

where a'(b) = {s | I'(b,s) = 0},and F'(") is the distribution function of the
buyers” types. The first term of the right-hand side of equation (3)
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represents the possibility that a type b buyer may not match with a seller.
The second term corresponds to the possibility that the buyer does have
a match but that the gain from trade is negative. In these two occasions
the buyer will either voluntarily or involuntarily wait for the next period
with an expectation of 8U'*'(b). The third term represents the possibility
that the buyer matches with a seller and the gain from trade is nonnega-
tive. In this case, the buyer expects a surplus of

[ (bs - PHb.s)(5)ds.

o'(h)
Similarly, the expected utility of a type s seller in period ¢ is

V()= (1 = par™(s) + pil1 = G(B(BV ()

+pt { Pb.s)g(b)b, )
B(s)

where B'(s) = {b | T/(b,5) 2 0}, and G'(-) is the distribution function of the
sellers’ types.

Substituting the expression of the expected price into equations (3)
and (4), the formula describing the expected utilities of the buyers and
the sellers can be simplified to

U'(b) = BU(b) + Py, | T'(bus) fi(s)ds, 5y

a'(h)

Vi(s) = 5V(s) + pi8, [ T(b.s)g(B)db. (6)
Bs)

In other words, the expected utility of an agent is the sum of his
discounted expected utility next period and his expected average share
of positive gain from trade during the current period.

Current expected utility depends on the discount factor, the probability
of a match, the share the agent obtains from the gains from trade, and
future expected utilities. Moreover, there are “interaction effects” in that
current expected utility for buyers depends on the future expected utility
of the other types of buyers, by way of the other buyers types affecting
the gains of trade to sellers. In addition a given seller’s house will have
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a stochasti.c price, since the price depends on the type of buyer with whom
the seller is matched. All of these dependencies seem realistic.

lll. STEADY STATE

When the inflows of both buyers and sellers are constant, the distribu-
tions of the types of the buyers and the sellers in the market will converge
to a steady state distribution. Therefore, the probabilities of having a
match, the prices, and the expected utilities will also converge. We
investigate the properties of any steady state by dropping the time index
¢ in the expressions of the expected utilities. This yields

1
U(b) = 8U(b) + py0y | max {0, (B,5)}is)ds
0
1
= [ max (3Ub), 8U(B) + py0,TBfs)ds. (D
0
1
Vs) = 8K(s) +p,0, | max{0,1(b,s)}g(b)db
0
1
= [ max {5¥(s), 8¥(s) + p,0,T(6,5)} g(b)db. ®)
0

We show that the expected utilities specified above for each type of

buyers and sellers exist and are unique. Below, fand g represent density
of the stock of buyers and sellers.

Proposition 1. Let f(x) and g(x) be smooth density functions that
are defined on [0, 1). Then for 0 <8 <1, there exist unique
continuous functions U(y) and ¥(y) on [0, 1] such that

1

V() = J max (8U), BUG) + pyyoy - 8U)
0

— 8V} f(x)dx, 9
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!
V(iy)= _[ max {8 M), OV (y) + p B, (xy — BU(x) - 3V(y)) }g(x)dx. (10)
0

Proofs are contained in the Appendix.

a(bh), where a(b) = {s l I'(h,s) 2 0}, is the set of sellers’ types such that
a match with a b type buyer creates a nonnegative gain from trade,
Similarly, (s), where f(s) = {b l I'(b,s) > 0}, is the set of buyers’ types
such that a match with an s type seller creates a nonnegative gain from
trade. It is profitable for both the buyer and the seller to trade if and only
it the gain from trade is nonnegative, so that these sets contain all the
information we need to decide when a trade will occur and who have the
highest probability of successful trade.

Proposition 2. a(b) and B(s) are convex sets for all b €[0,1] and
s €[0,1].

By Proposition 2, a(b) and B(s) are convex sets for all b €[0,1] and
s €[0,1]. In other words, they are all intervals, possibly degenerate
(either empty or a single point). For convenience, we call a(bh) the
trade interval for a b type buyer and B(s) the trade interval for an s
type seller. The following proposition indicates further that o(b) and
B(s) are nonempty intervals. Accordingly, we can express a(b) and P(s) as
a(b)=[a(b)Fb)] and B(s) = [B(s).B(s)), where afb)= mina(b),
Q(b) =max, ab), P(s) = min, PB(s) and B(s) = max, B(s), are the bounda-
ries of the trade intervals.

Proposition 3. (1) a(0) = &(0) = 0 and B(0) = B0y =0. (2) a(b) <
a(b) if 5> 0 and P(s) < p(s) if s > 0.

Proposition 3 indicates that the trade interval for a lowest type agent
contains only one point. For an agent of the other type, the trade interval
is nondegenerate. Its immediate consequence is that U(0) = (0) = 0, and
U(b) > 0, V(s) >0 forall b,s > 0.

In particular, a highest type agent in the market has a nondegenerate
trade interval. Furthermore, for a highest type agent, the upper bound of
his trade interval corresponds to the highest type of agents in the opposite
party. This is revealed in Proposition 4.

Proposition4.  ©(1)=1and B(1) = L.
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In the next proposition, we show a monotonic property of the lower
and upper bounds of the trade intervals with respect to the agent’s types.

Proposition 5. (1) When b < B(1), 0U(b) is strictly increasing with
respect to b and when b > (1), a(b) = 1: when s < a(1), Bls) is
strictly increasing with respect to s and when
sza(l), B(s)=1. () a(b) is strictly increasing for all
b €]0,1]: B(s) is strictly increasing for all s €[0,1].

Proposition 5 states that the region of nonnegative gains from trade in
(b.s) space is defined by two strictly increasing curves, o(b) and G(b) (or
B(s) and PB(s)). Proposition 5 is illustrated in Figure 1, where
fis)=1.gb)=1,p,=p,=05.0,=6,=0.5 and 3 = 0.95. Not surpris-
ingly, whenever 8(b) < 1, }(&(b)) = b, and, similarly, B(a(h)) = b.

Notice that the middle types have the broadest range of acceptable
matches and that the lower types have narrower trade intervals than the
middle types and the higher types by the conclusions of Propositions 3,
4, and 5. It implies that the middle type agents have the highest prob-
ability of successful trade. This is natural because the middle types can

Type of Seller

0 + Rl e & e
- o~ © - w © ~ © @ -
o o o o o o o o o
Type of Buyer

Figure 1. The Opportunity of Trade
(f(s)=1,g(b) =1, py=p,=0.5,8, =0, =0.5,and § = 0.95)
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trade with either the lower types or the higher types while the lower and
higher type’s trading abilities are impaired by the truncations of the types
at the extremes. The result that the lower types are restricted to fewer
opportunities of making a trade indicates that people generally prefer
higher type trading partners to Jower type trading partners.

The heterogeneity of both the buyers and the sellers in the model
makes it possible to compare the expected utilities of the different types
of the agents.

Proposition 6. If f(s) > 0 for s €(0,1) and g(b) > 0 for b €(0,1),
then U(b) and V(s) are strictly increasing when b €(0,1) and
s € (0,1).

Notice that the results of Proposition 6 are commonly observable
facts. If a seller owns a higher quality house for sale, he expects a higher
price and therefore has a higher expected utility; if a seller owns a lower
quality house for sale, he expects a lower price and therefore has a lower
expected utility.

Proposition 7. Urb) and V(s) are strictly convex.

Proposition 7 shows that the expected utilities are convex. This is
something of a surprise, for the usual intuition for convex utility in
heterogeneous type models fails to hold in the present model. The usual
intuition requires an agent to mimic another type and receive a payoff
linearly related to that agent’s type (e.g., a higher type buyer buying a
lower type buyer’s house). This mimicking is foreclosed, and this does
not underlie the result. The result is likely to be sensitive to the multipli-
cative form of utility.

We now turn to answer the question if there is a best match for each
agent in the market.

Proposition 8. Given b, P(b,s) is strictly increasing in s; given
s, P(b,s) is maximized at b* which satisfies

Proposition 8 shows that for a buyer of any type who would like to
buy a higher quality house, he expects to pay more. But for a seller, the
price of his house varies with the matched buyer’s type. It is not
necessarily true that a higher type buyer would offer a higher price
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because of his higher expectation of next period. There is a certain type
of buyer, which is specified by s — 8(0U(b)/0b)l,_,- = 0, whose price
would be the maximum for a type s house. This is surely the best type
for a seller to match with.

Note that a buyer does not necessarily prefer to match with a lower
type seller even though the price of a lower type house would be lower.
In fact, the utility of a type b buyer buying a type s house is bs — P(b,s),
which is maximized at

M(s)
b-6——| _.=0.
Os |‘=s

Therefore, the type of the sellers that a type b buyer would prefer to match
with is the type specified by

Py CLAOTRY
Os =5

Figure 2, which is simulated under the same market condition as in
Figure 1, displays the prices of a type 0.5 house for different type buyers.

0.125

0115

Price

011

0.105

01

- L] ©
o o Qo

Type of Buyer

0.3 1
07
08
09

Figure 2. The Prices of a Type 0.50 Houses for Different Type Buyers
(f(s)=1,8by=1,p,=p,=0.5,0,=8,=0.5and § =0.95)
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By Figure 2, the most preferable buyer’s type for a type 0.5 seller is
approximately type 0.55. Since the buyer and the seller are symmetric in
this case, a type 0.55 seller is also the best trading partner for a type 0.5
buyer.

Next, we explore the role that6,, 0, p,, and p, play in determining the
expected utilities, the boundaries of the trade intervals, and the prices.

Proposition 9. Letd = 0,, 8,, p, or p,, then do(b)/0A has the same
sign as OU(b)/0A and OB(s)/0A has the same sign as oV(s)/0A.

By Proposition 9, the effects of 8,, 8, p,, and p, on the boundaries of
the trade intervals completely depend on the signs of

dUb) dUb) dW(s) _ , dV(s) .
9 b I d =b’ .
" o, 08" gy TP
On the other hand,
dP(b,s) V(s) oU(b) 90, a1
0 5(1-0,)—~-08———+T(bs) = )
i o005 08T T T

which means that the effects of 8,, 8, p,, and p; on prices also rely on
the sign of the derivatives. Therefore, the key to deciding the role that
8,, 8., p,, and p, play in determining the expected utilities, the bounda-
ries of the trade intervals, and the prices is to identify the signs of

8U(b)’ 6U(b)’ 6V(s), and oV(s) (i = bys).
00, op; 00, op;
The results seem intuitively obvious, but the proof turns out to be
difficult.

We simulated the equilibrium model with different values of the
parameters and different distributions of agents’ types (uniform and
binomial distributions). The results show consistently that

QU)o BUB) o BUB) ¢ 0 oU®) _
26, P op, ap,

s

while

V(s)
00

M) <0, oVs) >0, and V) <0.

0 >
g 06, op, Opy

5
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When the probability of an agent’s having a match, or his share of the
gain from trade in bargaining increases, the expected utility of the agent
will increase. Conversely, when the probability of his partner’s having a
match increases or when his partner’s share of the gain from trade in
bargaining increases, his expected utility will decrease.

The effects of 8,, 0., p,, and p, on the boundaries of the trade intervals
can be easily determined from the simulation results by using Proposition
9: for an agent of any type, the lower bounds of the trade intervals are
positively related to the probability of his having a match, and his share
of the gain from trade. It is negatively related to the probability of his
partner’s having a match, and his partner’s share of the gain from trade.
The same result holds for the upper bound of the trade interval when
ti(b) < 1 or B(s) < 1. This is intuitive. For example, if the buyers and the
sellers believe that the market has been changing in favor of buyers so
that the bargaining power of the buyers in the market has increased, then
the lower bound and upper bound of the trade intervals of all buyers will
increase (when d(b) = 1, the upper bound will remain constant), and in
contrast, the lower bound and upper bound of the trade intervals of all
sellers will decrease.

As for the effect on the price, the simulation results imply (see
equation (11))

OP(b,s) [<0 when A =0,p,
84 |>0 whenA=86p

namely, the price is negatively related to the probability of the buyers
finding a match, and the buyers’ share of the gain from trade. It is
positively related to the probability of the sellers finding a match, and
the sellers’ share of the gain from trade. If, for example, all agents in the
market believe that the bargaining power of the buyers has increased,
then the price will strictly decrease.

Recall that the discount factor is denoted 8. When = 0, agents regard
the utility of the next period as zero. In this case, an agent of any type
would trade with anyone he meets. In other words, if there is a match,
there is a trade. The expected utilities take a much simpler explicit form:

1
U(b) = p,Bsb | sf(5)ds, (12)
0
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I
Vis) = p.0,s | bg(b)db. (13)
0

The expected utilities are positive {except for the lowest type), strictly
increasing and convex with respect to the type. They are also strictly
monotonic increasing with respect to the probability of having a match
and the share of the gain from trade. On the other hand, since
8, + 0, =1, they are strictly decreasing with respect to the share of the
gain from trade of the opposite party. However, the expected utilities are
not necessarily decreasing with respect to the probability of the opposite
party’s having a match since it is not necessarily true that p_ is inversely
related to p,. The price is

P(b,s) = 8.bs (14)

which is positively related to the types of both the buyer and the seller,
and the share of the gain from trade believed to be received by the sellers.
Notice that the best match for an agent of any type would be a highest
type agent of the opposite party.

When & = 1, it can be shown that Urb) and V(s) are not unique.
However, our computer simulation indicates that when & approaches to
one, the limits of U(b) and ¥(s) exist and their expressions are extremely
simple:

Ub) =357, (1

W(s) = %sz. (16)

We define them as the utilities at & =1.

Notice that these expected utilities are independent of the probabilities
of having a match, The reason for this is that there is no cost associated
with waiting. As long as the probability of having a match in a single
period is positive, the probability of having a match over time is equal
to one. The expected utilities also do not depend on the sharing rule of
the gain from trade in bargaining since the gain from trade when a type
b buyer matches with a type s seller would be I'(b,s) = —(b - s5)?, which
will never be positive. A type b buyer would trade only with a type b
seller and vise versa. The price would be

e, o
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Pbb) = 3 an

One may view an increase in the discount factor § as an increase in
the frequency of matches, holding discounting of the future constant.
There are two effects of an increase in 8. First, the future becomes more
valuable, tending to increase utilities. Second, because waiting for an
alternative match is less costly, the types of matches changes. For a high
type agent, both of these effects are positive, and utilities increase with
8. The second effect is positive because high type agents become more
likely to reject low type agents as & increases, and thus the quality of
their matches improves.

It is easily observed that the opposite is true for low type agents; that
is, the second effect is both negative and can dominate the first. Consider
an agent with type €, small, butexceeding 0. With & = 0, this agent obtains
legp, where 1 is the mean of the other agents type. As & — 1, this agent’s
utility converges to 1g? <lep for all small . Thus, increases in the
frequency of matching tend to benefit the high types at the expense of
the low types.

IV. NONSTEADY STATE DYNAMICS

In this section, we introduce a nonsteady state simulation dynamic model
based on the model presented in Section II to explore the effects of a
uniform demand shock on the distributions of the types of the agents, the
quantity traded, and the average prices for different quality goods.

As an approximation, we assume that there are N + 1 types for both
the buyers and the sellers in the market, where N is a large positive
integer. b(i) = £ and s(j) = 4 are the type indexes for the buyers and the
sellers, where i, j=0, 1, ..., N.Let B'(i) be the number of type b(i) buyers
and S'(j) be the number of type s(j) sellers in period ¢ before matching.
Then, the total number of buyers and sellers in the market
B'=%, B(i)and §' = £, S'()), respectively.

By using B’ and S’, the discrete distributions of the types of the agents
in period ¢ can be expressed as /() = S(j)/S* and g'(i) = B'(i)/B' (i,j =
0,1,..., N). We assume the probabilities of having a match for a buyer
and a seller to be p, =S"/(B'+S") and p!=B'/(B'+S') respectively,
which depend on the number of the buyers and the sellers in the current
market. We use B'(¢) and S'(j) to denote the number of the new buyers
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and the new scilers who enter the market in period ¢, and y to denote the
termination rate of the population.

Suppose that initially the market is in steady state: the inflow of buyers
and sellers always matches with the outflow of buyers and sellers
resulting from trade and termination, that is

By = By ~| 1 - p3 Y SO0 | (1 = )BY), (%)
jea’(i)
5% = 5% - [1 ) g"(z‘)} a-psep, 19
iep’())

where, T, ) = b(i)s(j) — 8U(d) — 8V°()), o) =4{J | TG, j) > 0} and
B°() = {i|T°(, j) 2 0}; the distributions of the types of the buyers
and the sellers remain to be £°(j) = $°(j)/S° and g°(i) = B(})/B° (i,j =
0,1,..., N); and the probabilities of having a match for a buyer and a
seller are fixed at pl=S°/(B°+S° and p)=B°/(B" + $%. The ex-
pected utilities of the agents and the prices of the good in steady state
have the following expression:

N

U0 =50°) + e, Y maxto, TG /%0, 0
J=l
N

Vo(j) = 8V(j) + p%8, Y max {0, 0, /)}g"(), 2D
=1

Y PG Y BV) + 8%
APy B0 <P (22)
=450 )

where *B%(j) is the number of the types of the buyers in the set B°(j).

Suppose now that there is a one-period uniform demand surge: the
number of new buyers of all types entering the market in period one
increases by 100 percent and in period two they return to the steady state
level, while the inflow of the sellers continues to be the same as in steady
state, that is

B'(i) = 2B°(i), (23)
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BH(iy=B()(t=1,2,..), (24)

while

SH=8%)(=0,1,2,...). (25)

Given the shock in demand in period one, the market is no longer in
steady state equilibrium. It evolves afterwards according to the following
dynamic equations (26)29) of the agents’ types and utilities.

Bo=[1-p" T 0 0 - 0B, O
L jea™) ]
so=[1-r" T eola-nstopeson
L g™y ]
N
UK(i) = 8U™ (i) + pyy, D, max{0, L./} /(). (28)
Jj=1
N
Vi(j) = 8V + pl8, D, max{0, I'(i, )} g'(d), (29)

i=1
t=12,...)

where, T, j)=b)s(j) - 8U'(0) - 8V*'()), ') = {J T4,/ 2 0}
and B(j) = {i | i) 20}

Equations (26) and (27) indicate that the number of each type of the
agents in period ¢ is the summation of the number of the remaining agents
after the trades and the termination in period 7 — 1, and the number of the
new agents joining the market in period . Equations (28) and (29) are
just equations (5) and (6) in discrete form.

The average price for type s(j) houses in period s can be calculated by
equation (30).

S PG Y @) +8TEN))
_— o (30)
AP! . =‘6B(j) =‘EB(J) ,
D=4 ()

where, “B'(j) is the number of the types of the buyers in the set B'(/).
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In our example, we let N = 800; that is, there are 801 types of buyers
and 801 types of sellers in the market. The types ofboth buyers and sellers
are uniformly distributed in initial steady state. Each type consists of 800
agents. We also assume that 0,=0,=05,8= 0.95, and y = 0.05. Since
U*'tiyand V"'(j) (i,j =0, 1, ..., N) are not available in period ¢, a
two-step procedure is employed in simulation. In the first step, we
substitute U''(i) and V"'(j) for U"*'(i) and ¥"*'()) in equations (26)—
(29) to obtain the initial series of U'(d) and V(j) (i,j=0,1,...,N,and ¢
=1,2,...,N). Notice that we calculate U'(§) and V() just for N periods,
since N period is long enough for the market to return to its initial steady
state. In the second step, we apply equations (26}29) again to get new
series of U'(i) and V*(}j), using the initial series we generated in step one.
This process continues until the limit of U'(i) and V'(j) are obtained.
Figures 3 and 4 display the simulation results of the effect of the demand
surge on the percentages of the type 0.05, 0.5, and 0.95 agents in the
market. In Figure 3, the percentage of buyers is graphed, while Figure 4
provides the percentage of sellers of these types.
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Figure 3. The Dynamics of the Percentages of the Type 0.05, 0.50, and
0.95 Buyers. Solid line, type 0.05; broken line: type 0.50; dotted line,
type 0.95.
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Figure 4. The Dynamics of the Percentages of the Type 0.05, 0.50, and
0.95 Sellers. Solid line, type 0.05; broken line: type 0.50; dotted line,
type 0.95.

For both the buyer and the seller, the dynamic paths of the high type
and the middle type agents are similar, while that of the low type agents
takes a different course. The percentage of a middle or a high type of
buyers increases when demand surges, then decreases to a level which
is lower than its original, and then increases again and gradually returns
to its initial level in steady state. As opposed to the middle and the high
types, the percentage of a low type of buyer first decreases dramatically,
then increases to a level which is higher than its original, and then
decreases again and gradually returns to its initial level. The dynamic
paths of the sellers look more like the mirror image of the dynamic paths
of the buyers.

The patterns of these dynamic paths are closely related to the fact that
the low type agents have less opportunity for making a trade than that of
the middle type and the high type agents, as we pointed out in Section
I1I (Figure 1). Because of the lower probability of having a trade for the
low type agents, the number of the low type agents who leave or join the
market each period in the steady state is less than either the middle or
the high type agents. Therefore, when the number of all types of new-



140 XIAOHUA LU and R. PRESTON McAFEE

comer buyers doubles, the percentage of the low type buyers drops and
the percentages of the middle and high type buyers surge.

Having more of the middie and the high type buyers in the market
creates even more trading opportunities for the middle and the high type
sellers. Consequently, in the second stage the quantity traded of the
middle and the high type houses increases much faster than that of the
low type houses, which causes the percentages of the middle and the high
type sellers in the market to decrease dramatically while that of the low
type sellers increases. When this happens, it diminishes the trading
opportunities for the middle and the high type sellers and the trading
opportunity for the low type sellers grows. Accordingly, the sale of the
middle and the high type houses drops while that of the low type houses
rises, which increases the numbers of the middle type and the high type
sellers and decreases the number of the low type sellers in the market.
There is a certain period in which the percentage of a middle or a high
type sellers in the market is higher than that of the low type sellers.

In the third stage, the impact of the demand surge fades because of the
partial termination of the population and the discount factor. The per-

025

0.2
% 015
8
38
£ 0.1
£ .
3 A
n
1"
005 f
10
i
0
0.05 ) + + + + —+—
° h 2 2 5 ] 8 3 3 2 2

Period

Figure 5. The Relative Price Changes for the Type 0.05, 0.50, and 0.95
Houses. Solid line, type 0.05; broken line: type 0.50; dotted line, type
0.95.
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centages of all types of buyers and sellers in the market gradually return
to their original steady state level.

Figure S displays the relative price changes of the type 0.05, 0.50, and
0.95 houses, after a demand surge.

The prices of the middle and high type houses jump immediately to
the highest possible price when the demand increases, reflecting the
perfect foresight of the agents. Then they gradually decrease and return
to their original levels in steady state. Notice that the price of a 0.05, 0.5,
and 0.95 type house increases by about 24 percent, 9 percent, and 4
percent, respectively, indicating that the lower the quality of'a house, the
greater its price fluctuates. It reveals that the lower type sellers who
successfully traded in the period following a uniform temporary demand
surge will benefit most, much more than that of the middle type and
higher type, the middle type the second, and the higher type the least.
Correspondingly, the lower type buyers are the biggest losers.

V. CONCLUSION

Based on the framework of pair-wise matching and bargaining, we
established a model for a housing market in which both the buyers and
the sellers are heterogeneous. In this model, the expected utilities, the
trade intervals and the expected prices are characterized. The model
provides an account of how price is determined in such a market and
provide answers to questions like “who would trade with whom” or
“when a trade would occur” and “is there a best match for an agent and
who is the best match for an agent?” in such a market. The nonsteady
state simulation model introduced in this paper could find general
application in studying and predicting the effects of different types of
demand or supply shocks in the market.

The novelty of the model is that it captures the complexity of the
formation of expectations and price determination in a decentralized
market by using a simple framework. Two interesting conjectures emerge
from the simulations. First, overshooting in response to shocks is com-
mon; the rate of transactions may go above steady state, only to fall
below, and return to steady state. Second, prices are more volatile for
low-valued items. This conclusion is probably a consequence of the
multiplicative nature of payoffs.

Although the model is presented in terms of housing market, it could
be reinterpreted and applied to other decentralized markets. For example,
we could apply it to a labor market by reinterpreting b as the index of the
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productivity of the firms and s as the index of the productivity of the
workers.

APPENDIX

Proof of Proposition I: Consider the set of continuous functions
C([0,1],R?) which consists of all continuous maps of the closed interval
[0,1] into R2. Obviously it is not empty.

For an arbitrary element (U(y).¥(y)) € (([0, 1],R?), we define the
norm as the usual superemum norm, that is,

U, V)N = max {sup | Uy, suplVIE -

It is easy to verify that C([0,1], R?) is a Banach space with respect to the
norm defined above.
Let T be a mapping from C([0,1}, R?) to §, where

S={UM V) €[0, 11} such that

T: (U ) >
1

[ max{8U(y), 8U(Y) +p,8,(xy - BU(Y) = BV} / (),

0

1
[ max (51 y), 81(») + p.8,0y = B1(y) — BU) hegx)d |.
0

Obviously T is continuous, therefore T(U( y)) and T(V(y)) are continu-

ous when both U(y) and V(y) are continuous. Hence, T is a mapping from

C([0,1},R}) to C([0,1],R?). Now we show that Tisa contraction mapping.
For all elements ((U,(»), V,(2)), (Ux(»), Vo)) € C([0, 1],R?), let

T(y.x)=xy-0U\(y) - 8V, (x)and I'y( y,x) = xy - SU,(y) — dV5(x).
Then,
ITCU(), V1 (y) = TUA ) VAN |l

= max {sup| | (max {8U,(5), 8U,(3) + p,8,C1(3 )}
Y o
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— max{BUs(y), 8Us(3) + pBla( 30} f@)dx

1
sup| [ (max{8V,(1), 87,00 + PO (x)}

Yoo

— max {8V,( 1), 8V ) + p,8,T(x.y)Hglx)dx Iy

1
< max {sup j | max {3U,(»), 8U(») +pp0, 0 (v, %)}
.v U

—max{dU,(»), dU5(») + ppBp o y.x)} |f(x)a'x,

1
sup [ [ max{8,(3). 5V1() +pOT (.3}

Yoo

— max {8V5(y), 5¥5(3) + p0,Tax. 1)} | glxdx}.

For the first term in the last expression, if I'(y.x) <0 and I')(yx) <0,
then

A= | max{8U(»).8U,(») +p T 1 (yX)}
— max {8U{( »).8U(7) + Byl (v} |
=51 U(») - U]
<5 maX{Slipl Uy(y) - Uz()’)|,51ylpl )=Vl
ifT(y, x>0 and I')(y,x) > 0, then
A< (1 = p,8)BUL) - U + 8800 = V()|
< (1= 08| U,(») = Uy | +p,881Vi(5) = Vo]
<8 max{Sl:pl U(») - U], SL:p| Vi -Vl

ifT(y,x)<0 and T',(»,x) >0, then
B(Uy(y) + Vo)) <xy S8(U,(») + V()
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hence
U Y) — ppxy = (1 = pB)3UL(¥) + py8,8¥5(x) €

[3(Us(y) = Uy, (1 = pBp)S(Uy () = U\ () = p8,8(H20) = V0]

Since
8l Uy - Ul SSmax{sL}gpl Uiy - Un(») |,
sx‘{pl V() -V
and |
(1 = BB — Uy(3) ~ P83 9) = i) |
<5 max sup | U(») - U] sup V() -V
thus | |

A = [8UL(3) ~ iy = (1 = 288U ) + pByd V(0|

< & max{sup| Uy(y) - Uz(y)l,sur)| Vi(y» - Vz(,V)i |5
¥ y

similarly, if [,(y,x) > 0and T',(y,x) £ 0, then
= | pBxy + (1 = p8,)8UL () — Py08 Y (x) = BU(y) l

<& max{supl Uy(») - Us(») | sup| (3 - V(0 |}
y y

Therefore we conclude that
A <8 max{sup| U,(») - Uy(») Lsup [ V() - () |}
¥y ¥

always hold. Similarly, for the second term, we can prove that
| max {3¥,(»), 8¥,(3) + P8, (x, )}
~ max{8V,(»), 8¥(») + PO x )}
< 6max{sgp| U(») - U, ,sgpl n(» -Vl

——ﬁv————————
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Therefore, when 0 < 8 < 1,
| TCU ()1 (0) — T, V()

<& max{sup| Uy(») ~ U Lsup | 1,0) = Vo [}

=3[ (U () = (U V0N |l

< U,V = (Ua() VoD

That is, T is a contraction mapping. By Banach fixed-point theorem,
there exists a unique pair of continuous functions (U( »), ¥(y)) on [0,1]
such that

1
Uty = I max{SU(y), BU(Y) + pdy(xy — BU(Y) = BV(x))} f()dx,
0

I
)= j max {8¥( ), 8V(y) + p0,(xy = 3U(x) — 8V y))}g(x)dx.
0 Q.E.D.

Proof of Proposition 2: (1) We first prove that U(b) and ¥(s) are convex

functions.
Let b=Ab, + (1 —A)b,, A € [0,1], then

Ub,) = 8U(b,) + 1,9, | T(6,.5) f(5)ds,

alb)
hence,
)
Ub) =15 [T/ (s)ds
a(b)
I T(b,.5)  (s)ds
_5 P
p PoZ j T(b,,5)/(s)ds.
a(b)
Similarly,
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P95
1-98

[ Pbss) f(s)ds.

afh)

Uihy) 2

Consequently,

(1= 8) + p 0, SF(a(BUb) 2 p,8, | (bys - 8¥(s)) f(s)ds,
alh)

((1 = 8) + pyOySFab))Uihy) 2 py0y [ (bys - 51(s)) f(5)ds
a(b)

so that
(1= 8) + p,O,SF((B)RUb)) + (1 = MU(by)

> py0, | (bs - 8V(5)) f(s)ds
a(h)

=20, | T(b.5) £(5)ds + p,9, [ 5U) f(5)ds
alh) afb)

= (1 = 8)U(b) + p,8,0F (b)) U(d)
=((1 = 3) + pp0,8F (b)) U()),
hence LU(b)) + (1 = WU(b,) 2 U(b). Therefore Urb) is a convex func-
tion. Similarly, it can be proved that V(s) is also a convex function.
(2) a(b) is convex if V(s) is convex; B(s) is convex if U(b) is
convex. Vs, s, € a(b) = {s | I'(b,s) 2 0}, by definition
bs, = 8U(b) —dH(s)) 20,
bs, — 3U(b) — 8M(s,) 2 0.
Lets=As, + (I —A)s,, A e [0,1], then
bs — 3U(b) — 8W(s)

= b(hs; + (1 = L)sy) = SUBY(A + (1 - 1)) = 8V(hs, + (1 = X)s,)
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= M(bs; = 8U(b) — 8¥(s,)) + (1 — M)(bs, — SU(b) — 8V(s,))
+8(Ms) + (1 = W¥(sy) = Vs, + (1 - 1)s,))

2 8(V(sy) + (1 = M)H(sy) = Vhs; + (1 = A)sy)).
When V(s) is convex, bs — 8U(b) — 6¥(s) 2 0, hence a(b) is convex.

Similarly, when Ub) is convex B(s) is convex. By (1) and (2), a(b)
and B(s) are convex for all b €[0,1] and s €[0,1] Q.E.D.

Proof of Proposition 3: (1) First we prove that for all b € [0,1] and
s e [0,1],

a(h) = {s|T(b,s) 20} # @ and B(s) = {b|T(b,s) 2 0} = B.
v belol1],

P9y
1-38

[r.s) res)as

alh)

U) =

P98
1-3

- % J (b5 = 8¥o) 1) - Fao) U,

a(b)
It can be expressed as

B pbeb(bs - 6V(s))
ue) = (fb T8+ BBF®)

S(s)ds,

where F(-) is the distribution function corresponding to the density
function f(-). When b =0,

P8, (-0¥(s))
(1-23)+p,98,0F(a(0))

uo) = | £(s)ds.

a(0)

Since both U(b) and V{s) are nonnegative for all b and s, U(0)= 0.
Similarly, V(0) = 0.

For all b such that U®) = 0, a(b)# D because 0 € a(b)=
{s | bs ~ OWH(s) — 8U(b) 2 0}. For b satisfying U(b) # 0, by the definition
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of U(b) we also have a(b)=D. Hence for all b € [0,1], a(d) = D.
Similarly for all s €[0,1], B(s) # &.

By Proposition 2, a(b) and f(s) are convex sets. Therefore, both
a(b) and B(s) are nonempty intervals, denoted as a(b) = [a(b),a(b)]} and

B(s) = [B(s),B(s)], where

a(b) = min a(b), ob) = max a(b),

B(s) = min B(s) and B(s) = max B(s).
b b

Note that a(b), G(b), B(s) and B(s) satisfy the following equations at the
neighborhood of zero because of the continuity of the function I'(b,s):

sB(s) — 8V(s) — BU(B(s)) = 0,
sB(s) = 3V(s) = SU(B()) = 0,
ba(b) - 8V(a(b)) - 8U(b) = 0,
boyb) - dV(oub)) — dU(b) = 0.

By using a(b), 0(b), B(s) and B(s), the expected utilities of the buyers
and the sellers can be expressed as
o(b)
P8
ub =2 [ (bs—31s) - 8UB) f(s)ds,
a(b)

B
[ (bs - 8¥(s) - 5UBYg(B)ab.
Bs)

Ps
1-38

W(s) =

Take derivative with respect to b for the first equation, s for the second
equation, we get

a(d)
dUb) f
ab 7 (1

P8y
—8) + pyB,3(F(G(b)) - Fla(b)))

S(s)ds,

a(®)
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Bes)
dVv(s) _ .[ p9b

ds , —8) +p,8,8(G(B(s)) — G(B(s)))

g(b)db.
B(s

Now we prove that a(0) = {0} and B(0) = {0}. Obviously, a(0) =0
and B(0) = 0. We claim that a(0) and B(0) are also equal to zero.

Otherwise, suppose, for example, @(0) > 0. Then, V{a(0)) = 0 since U(0)
= (). On the other hand, by definition,

I pB(bo0) — 5V (DU0)) — 8U(b))
1-8

V(a(0)) =
B(a0))

g(b)db

A LG UR Q)
1-6

{6 16a(0)-3L(5)20}

g(b)db.

Let y, = ba(0) and y, = 8U(b), then lim,_,, dy,/db = &(0) > 0 and in the
neighborhood of zero,

dy, _ dU(b)
db " db

0(b)
Pp00 J‘ & sf(s)ds

" (1= 8) + p,B,3(F@E(b)) - F@(b)

P0,80(b)(F(0Ub)) — Fab)))
(1= 8) + p,B,3(F(0b)) - Fla(b)))

" dy, . ppBp80(b)(F (b)) - F(ab)))
im <lim

50 45 " b0 (1= 8) + pyB,8(F(G(b)) — F((b)))

___PeB,S0(O0)F(O(0)) — F((0)))
(1= 8) +p,8,8(F((0)) - F(a(0)))

< ®(0).

Hence, lim,_, dy,/db>lim, ,dy,/db. But at b = 0, y,=»,=0, by
continuity of the functions, there exists b’ >0 such that for all
b € (0,0"), boi(0) > SU(b). Hence
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p,0,(bB(0) ~ 5U(b))
1 -8

Mou0)) = '[ g(bydb > 0.

16| bE(0)-5L(H)20}
This is a contradiction. Hence, 8(0) = 0. Similarly B(0) = 0. Therefore
a(0) = {0} and B(0) = {0}.
(2) By (1) we have
10} = a(0) = {s| —8K(s) 2 0¢ = {s| V(s) < 0}
and
{0} = B(0) = {b| — 8U(b) 20} = {b| U(b) < 0}

hence, for all b= 0 and s # 0, U(b) > 0 and V(s) > 0. By the definitions
of Ub) and V(s), we conclude that for ail =0 and all
s # 0 a(b) > a(b) and B(s) > B(s). Q.ED.

Proof of Proposition 4: We only prove the first equation. The proof of
the second equation is basically the same.
We first prove that for all b € (0,1),

du) _ PiOis
ds atty (1= 8) + 0, 8(F (b)) — F(a(b)))

f(s)ds

For 0 < b < B(1),orb> B(1), it must be true that G(1) < 1. By the con-
tinuity of the function of I'(b,s), we have ba(b) — SH(a(b)) - dU(b) = 0
and bai(b) — SV(OUb)) — SU(b) = 0. Hence, the above equation holds.

ForB(l1)<b< B(1), ba(b) - 8V(a(b)) - dU(b) =0 is still valid, but,
boub) - SV(dib)) - SUb) =0 since 0o(b)=1. However, when
a(b) = 1, doi(b)/db = 0, therefore, the above expression of the derivative
for the utility still holds.

Suppose Proposition 4 is not true, that is, B(1)< 1, where
B(1) - 8¥(1) - 8U(B(1)) 2 0, then there exists b= B(1) +Ab (Ab> 0)
such that b — V(1) — 8U(b) < 0. Hence,

(b~ B(1)) - d(Ub) — UB(1)) <0

or
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UG() +4b) - UBM) | L

Ab b}
Therefore,
du), 1
db 'b=BY T §
But, forall b € (0,1),
au) 0
u(b) PpYss
= d
b u(jh)u o+ @) - Faon” O
L[ POS(F(ae)) — Fa(b))
T38| (1 - 8) + pB,S(F(@U(b)) - Fla(b)))
|
<.
This is a contradiction. Therefore B(1) = 1. Q.ED.

Proof of Proposition 5: First we prove that U(b) is strictly convex
when b < B(1).
Y b,, b, < B(1), where, b, # b,,

a(b) = {s|bys - 8V(s) 2 8U(b))} = [a(b)),0(b)],
a(by) = {s | bys— 8V(s) 2 8U(by)} = [au(by),0(b))],
then a(b,) # a(b,). Otherwise, suppose b, > b, but a(b,) = a(b,) and
a(b)) = o(b,). Since b,a(b,) - 8V (a(b,)) =3U(b)) and bo(b) -
V(b)) = 8U(b,), we have
bya(b)) — dV(afby)) = b,0u(by) - SV(@Ub)));
similarly

bya(by) — 3V aby)) = by0(by) — 8V(0bY)).

_
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Subtracting one equation from the other we get
(by = byyafb) = (b) — by)o(b, ),

but b, #b, so that a(b)=0(b)). This 1s a contradiction since
a(b)) <0fb,). Therefore a(b))= a(b,). Let b=2Ab +(1-A1)b, and
A € (0,1). Applying the same arguments to (b,b) and (b,b,), we obtain
that a(b) # a(b,) and a(b) # a(b,). Thus,

PO

I I'(b,,5)f(s)ds

0l(b )

U, )—

0
>pbb

2708 [ TG s

a(byAalb )-a(b)

[(by.5)f(s)ds

0
S

a(b)

0
P [ Db fis)ds

(ou(b,)-a(b))

POs
> T——S I F(b,,s)f(s)ds,
a(b)

and

PbbJ‘

U(b,) 2 ['(b,,5) f (s)ds.

a(b)

Applying the same arguments in the proof of Proposition 2, we obtain
that U(d) is strictly convex when b < (1). Similarly ¥(s) is also strictly
convex when s < a(1).

Next, we prove that G(b) is strictly increasing with respect to b when
b < B(1) and a(b) = 1 when b > B(1).

V b, b" < B(1). Suppose &’ > b", but ab’) < G(b"). It is easy to see
that o(b') <od”)<1=a&P)). Since (b) is continuous,
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Jbe (BB s.t. ob)=0(b"). Obviously, b".b € B(C(b")) but
b’ & P(O(b")), while b > &' > b", hence B(Q(b")) is nota convex set. This
is a contradiction. Therefore o(b’) 20(b"). Consequently,
do(b)/db>0. We claim that da(b)/db#0. Otherwise, by
pab) — dV(ai(b)) — dU(b) = 0, we have

dUb) _

dog) ® gy MO

db V@)
- ds

which means that &(b) = § dU(b)/db. Take derivative with respect to b,
we get

dob)  d>U(b)
db T dbt

Since the expected utility isstrictly convex when b < B(1), the right-hand
side of the equation is positive, therefore, d0i(b)/db > 0. This i1s a
contradiction. Therefore 8(b) is strictly increasing with respect to b when
b < B(1). By Proposition 4, 8(1) = 1. On the other hand, a(B(1)) =1,
while B(1) is a convex set. Therefore 6(b) = 1 when b 2 B(1).

Similarly, B(s) is strictly increasing with respect to s when s < a(1),
and P(s) = 1 when b= B(1).

Now we prove that a(b) is strictly increasing with respect to b for all
b € [0,1] and B(s) is strictly increase with respect to s for all s € [0,1].
But these are obvious since a(b) is the inverse function of B(s) and
B(s) is the inverse function of Gi(b). Q.E.D.

Proof of Proposition 6: We showed in the proof of Proposition 4 that
for all b € (0,1),
ab)
dU(b) PrOss
db o) (1= 8) + ppB,3(F(qUb)) — F(e(b)))

S(s)ds

Since f(s)>0 for s €[0,1],p,>0,8,>0andd(b) > a(b), when
b € (0,1), we have dU(b)/db > 0, that is, U(b) is strictly increasing
when b € (0,1). Similarly ¥(s) is also strictly increasing when
s € (0,1). QE.D.
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Proof of Proposition 7: By Proposition 5, V b,, b, e [0,1],if b # b,
then a(b,) # a(b,); V 5,5, € (0,1), if 5, # 5,, then B(s,) # B(s,). Follow-
ing the steps in the first part of the proof of Proposition 5, it is easy to
show that U(b) and V(s) are strictly convex. Q.ED.

Proof of Proposition 8: Given nb, since

oP(bys) ©

— (8W(s) + 0,(bs — BU(b) — 8¥(s)))
Os 0s

oV(s)
=0,b+(1 —95)8’5"‘>0,

hence, P(b,s) is strictly increasing in s for given nb.
On the other hand, since

oP(b, 0
- é—b D | = OV6) +O,tbs = BUB) =BV |

- oub) _
=0(s-8 vy |b=b.) =0,

and

ym@g:_esyuw)<o

ob? L%

3

hence, P(b,s) is maximized at b which satisfies

oU(b)
s=8 ob lb:b' =0 Q.ED.

Proof of Proposition 9: We know that ba(b) — SV(a(b)) —3U(b) =0
for b e [0,1] and sP(s) — 8¥(s) — SU(B(s)) = O fors € [0,1]. Take deriva-
tive with respect to 4, we get

da(b) s V(b)) Sud) _ & oub)
04 s 84 04

0B(s) OV _ 5 QUG BE) _
04 04 ob 04

b 0,
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or
oU(b)
da(b) _ 04
TEIN(E0)
Os
5 V6)
oB(s) 0A )
o4 BU(B(s))
S35
Since
Blei()
oV(aub)) pHb
ab) _ b)db
o L{ 179 pORGRab) - GEet) *

. bp8(GH) - G(Ba(b)))
~(1-8)+p,8,3(G(b) - G(B((b)))

p,83(G(b) - GB((b))
(1-38) +p0,8(G(b) - G(B))

Yl
5

A
2R~

and similarly

SUBE) _s |
ob 8
We conclude that do(b)/84 has the same sign as oU(b)/0A4 and
0OB(s)/0A has the same sign as OV(s)/0A. Q.E.D.
NOTES

1. Rothand Sotomayor (1990) provide an extensive description of existing matching
markets.
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2. Smith (1993) also considers two-sided heterogeneity in a model without transfer-
able utility. Other related papers include McAfee and McMillan (1988), Morgan (1994),
and Sattinger (1993).

3. No termination will be a special case.

4. The utility of a type b buyer consuming a type s house during all periods can also
be specified as kbs. All of the results still hold.
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LOTTERY QUALIFICATION AUCTIONS

Ronald M. Harstad and Robert F. Bordley

ABSTRACT

We analyze a Q-lottery qualification auction; the Q highest bidders qualify for a
lottery giving each a 1/Q chance of obtaining the asset (0 =1 isa second-price
auction). We also provide some results for an oral variant, the Q-curtailed oral
auction, which sets the price as soon as only 0 of n bidders remain in competition,
then awards the asset by lottery. Despite the probability of an inefficient outcome,
there are many cases in which a seller prefers to choose @ > 1. Examples show
that Milgrom and Weber’s Linkage Principle does not extend to nonstandard
auctions. In particular, undermining the privacy of the highest-valuing bidder’s
information and augmenting expected revenue are seen to be less closely aligned
than previous explanations might suggest.

I. INTRODUCTION

In a “lottery qualification” auction, bids are submitted for the purpose of
qualifying for a lottery to determine the winner. Specifically, a seller
announces a parameter Q, bidders submit sealed bids, and the Q highest
bidders qualify for a lottery in which each has a 1/Q chance of being the
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