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Data from wine auctions indicate that identical products sold sequentially
typically follow a decreasing pattern of prices, known as the declining price anomaly.
This is explained, for both first and second price auctions, by appealing to risk
averse bidders. Earlier bids are then equal to expected later prices plus a risk
premium associated with the risky future price. We show that this logic rests on the
assumption of nondecreasing absolute risk aversion, which is necessary for pure
strategy equilibrium bidding functions to exist. Thus, decreasing absolute risk aver-
sion implies ex post inefficiency with positive probability. Data from wine auctions
are used to confirm the existence of the declining price anomaly. Journal of
Economic Literature Classification Numbers: D43, D44, D81, D82, L81. « 1993
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INTRODUCTION

It is common in the theory of auctions to analyze the sale of a single
object, even though many copies of the same good are often sold at actual
auctions. For example, in the June 23, 1990 sale of fine wines at Christie’s
of Chicago, of 1355 total lots, the sale of a wine was followed immediately
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by the offering of an identical wine 119 times. The fact that similar goods
may be sold sequentially has generally been ignored in the auction
literature (some exceptions are [7, 12]) and yet results from the empirical
study of sequential auctions have posed an intriguing puzzle. If two similar
objects are to be sold one immediately after the other to risk neutral
traders, equilibrium arguments suggest that on average they should
generally sell at the same price. Otherwise, agents bidding in the high-price
period would do better on average to participate only in the low-price
period. Ashenfelter [ 1] finds a definite pattern in the prices of objects sold
at auctions sequentially. Wines sold at later periods more frequently sell at
lower prices than higher prices than identical wines sold in earlier periods.
These periods are frequently just minutes apart. This is known as the
declining price anomaly or, among wine traders, as the afternoon effect.

This result is opposite to that predicted by the standard affiliated values,
risk neutral model. Milgrom and Weber [7] show that, with independent
private values, expected prices should remain constant and with affiliation
the expected price should rise over time. Expected prices rise because early
auctions release information about the value of the good, thereby reducing
concerns about the winner's curse in subsequent auctions, a phenomenon
that Milgrom and Weber [6] call the Linkage Principle. Thus, the pattern
of prices found by Ashenfelter is inconsistent with the received theory. The
pattern of prices suggests that risk aversion plays an empirically important
role in bidding.

This paper analyzes the independent, private values model but
investigates the effects of risk aversion on the path of prices. Ashenfelter
suggests that declining prices are consistent with risk averse bidders,
because then the expected first period price will equal the expected second
period price plus a risk premium for the randomness in the second period.
We show that this intuition requires an assumption not likely to be
satisfied in practice. Moreover, in the more likely case, repeated auctions
lead to an inefficient allocation. With a positive probability, a low value
bidder obtains the item when a high value bidder does not. The allocative
efficiency of single item auctions in symmetric environments generally does
not extend to repeated auctions with risk averse bidders.

That repeated auctions are inefficient is important for at least three
reasons. First, the preponderance of theoretical evidence suggests that auc-
tions lead to ex post allocative efficiency for the single item case. Our result
casts a shadow on these results, as they do not extend to repeated auctions
in an empirically relevant case. Second, ex post inefficient allocations will
create the potential for retrading after the auction. An important goal for
future research in repeated auctions, then, is to incorporate retrading.
Third, we find that bidders must randomize their bids in early auctions.
This observation is potentially very important for empirical studies that
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attempt either to test the theory, or draw to auction design conclusions for
policy purposes.

In fact, Ashenfelter’s intuition is correct for some utility functions and
not for others. It is shown that only in the case of nondecreasing absolute
risk aversion (see [9]) do pure strategy, monotonic equilibrium bidding
functions exist for two-period repeated first price or second price auctions.
In this case, the path of expected prices follows the pattern exhibited in the
data. The expected winning price in the second period is lower than that
of the first, and the difference is a risk premium.

The intuition for the declining path of prices can be seen by noting that
any auction represents a gamble for a bidder. A player submitting a bid in
the first period of two period auctions uses the expected utility of the
second auction to assess the cost of losing in the first period. For a risk
neutral bidder, the fact that the utility generated by the second period auc-
tion is a random variable is irrelevant. For a risk averse bidder, though, the
randomness of utility from the final auction reduces his value and therefore
increases the bid he is willing to make in the first period.

This intuition also indicates why nondecreasing absolute risk aversion
(NDARA) is needed for the result. In second price auctions, for example,
the first period bid of a bidder with valuation x is the expected value of the
third order statistic conditional on all other valuations being lower than x
plus a risk premium associated with the gamble of the second period auc-
tion. The first component is clearly increasing in x, however, the second is
only increasing in x in the case of NDARA. The possibility of constructing
monotoni¢, pure strategy bidding functions may then be frustrated by the
opposing relative attitudes to risk of agents with higher valuations.

The fact that NDARA is necessary for the existence of pure strategy,
monotonic bidding functions is important for two reasons. First, there is a
general acceptance that at least increasing absolute risk aversion is an
unsatisfactory characterization of attitudes to risk (see, for example, [10}).
Second, if equilibrium bidding functions are not monotonic or are not
in pure strategies, than with positive probability the sequential auction
will result in an allocation which does not give the objects to those who
value them the most. With positive probability, the ex post allocation is
inefficient.

The structure of the paper is as follows. Section 2 describes the environ-
ment and Sections 3 and 4 characterize equilibrium bidding functions in the
case of NDARA for the second-price and first-price auctions, respectively.
Section 5 presents an example in which agents exhibit strictly decreasing
absolute risk aversion (DARA) and characterizes a mixed strategy equi-
librium. Section 6 provides an analysis of data from wine auctions
from Christie’s of Chicago to confirm Ashenfelter’s finding in [1]. The last
section offers conclusions.
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2. THE ENVIRONMENT

There are n = 3 potential buyers for two identical items. Each buyer i has
a value x;, known only to buyer /, for one unit. Values are identically and
independently distributed with cumulative distribution function F, which is
assumed to have a continuous density f, and f has support [0, x,].
A buyer / who purchases a single item at price p receives YVon Neumann
utility w(x,— p), where x, is that buyer’s value. There is no increase in
utility associated with obtaining a second unit, so that all buyers have zero
utility of a second unit. Note that this structure forces values to be
monetary, in that the utility depends only on the difference of value and
payment, but allows for risk aversion through the function ». We assume
that « has a continuous nonpositive second derivative and positive first
derivative, and set u(0)=0 without loss of generality.

We will consider two distinct games. In the first, the goods are sold
sequentially by sealed-bid second price auction.! In the second, the goods
are sold sequentially by first price sealed bid auctions. Both auctions have
a zero reserve price. A useful benchmark is the expected price when the two
goods are sold simultaneously. The method analogous to a second price
auction for a single good is a third price auction, where the highest two
bidders receive the goods at a price equal to the third highest bid. Similar
to Vickrey’s (see [11]) proof for the second price auction, bidders have a
dominant strategy to report their valuations honestly. Thus a third price
auction produces an expected price equal to the third highest valuation.
A first price auction allows the two highest bidders to obtain the item at
their bid. We include the following result, proven in [12]. Denote by X,
and x;,, the random variable, and its realization, that is the ith highest of
n i.id. draws from F. Thus, with two goods to sell, the realized price in the
third price auction is x;,. When the sample size is not n, we will represent
the ith order statistic as X,.,,, where m is the sample size; thus we
suppress the sample size when it is # and not otherwise.

PrOPOSITION 1 (Revenue Equivalence; Weber). Consider the sale of k
objects to n>k bidders with iid. private valuations. Then the (k +1)st
price auction produces a price x , y,. The bid of a risk neutral buyer with
valuation x in a first price auction is E{X ., 1,1 Xic.n 1, <x}. Thus the
expected revenue is the same in the two auctions under risk neutrality.

Remark 1. This result generalizes the usual bidding result which shows
that in a sealed bid auction the symmetric equilibrium bidding function is
the expectation of the highest of the other bidders’ values, conditional on
those all being less than the given bidder’s value.

' See [4] for a description of auction games.



THE DECLINING PRICE ANOMALY 195
3. TwicE REPEATED SECOND PRICE AUCTIONS

The second price auction is simpler to analyze than the first price
auction because the bidders continue to have a dominant strategy, to bid
their true valuation, in the second auction. A pure strategy symmetric
equilibrium in this environment is a bidding function B,. so that a bidder
with value x; bids B, (x;) in the first of the two auctions, and then bids x,
in the second.

Suppose B, is increasing. Fix a buyer and let Y, 2Y,> ---2Y, | be
the order statistics of the other buyers’ values. The payoff to a buyer who
bids b= B,(r) when his value is x is

v(r, X)= E{u(x =B (Y DY, <r} P(Y,<7)
+ E{u(x—Y,)| Y =rand Y,<x; P(Y,=rand Y,<x). (1)

The two terms in Eq. (1) represent the events of winning the first and
second auction, respectively. The buyer wins the first auction if his bid
B,(r)=5b exceeds the bid B,(Y,) of the highest value competitor. The
buyer wins the second auction provided he loses the first auction, in which
case the Y, value buyer wins the first, and provided he has the highest
value in the second auction. The next proposition shows that following the
pure strategy bidding function B, comprises an equilibrium if « displays
nondecreasing absolute risk aversion.

ProPOSITION 2 (Existence). There exists a symmetric increasing pure
strategy equilibrium bidding function B, for every distribution F if and only
if u displays nondecreasing absolute risk aversion. In this case, B, satisfies

) (n=2) F(y)" f(»)

u(x—B,(x)):L u(x —y) Foor dy. (2)

Moreover, if u displays decreasing absolute risk aversion, then no symmetric
increasing pure strategy equilibrium bidding function exists for any distribu-
tion F.

All proofs are provided in the Appendix.

Remark 2. There appears to be a consensus that individuals display
decreasing absolute risk aversion (this is suggested in [9, 10]), ie., that
risk premia decline, for a fixed gamble, as wealth increases. In this event,
Proposition 2 indicates that either nonmonotonic strategies are used, or
bidders must randomize. However, there is a pure strategy equilibrium for
the case of constant absolute risk aversion.
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Remark 3. An intuition for the necessity of NDARA is as follows. In
the second auction, the price will be the third highest value. Thus, a bidder
with value x expects to pay E{X ;| X < x]. This is random, so the bid-
der also associates a risk premium R(x) to this amount; i.e., the certainty
equivalent of competing in the second auction is E{x— X3 X;<x} —
R(x), which represents his expected profits minus his risk premium. Now
consider a slight decrease in the bid, from B, (x)= E{X ,| X5, < x} + R(x)
to B,(r). The only event in which this has an effect on the bidder’s utility
is when x> Y, >r, in which case he loses the first auction and wins the
second, where bidding B,(x) would have him win the first. Therefore,
necessarily,

Elu(x—B (Y Wx>Y,>r}ZE{lu(x—Y,)|x>Y >r} (3)

Since these are equal as r — x, this inequality says that the risk premium
of the left hand side increases with a slight increase in x, ie., increasing
absolute risk aversion.

Remark 3 also provides an intuition for the declining price anomaly,
because a bidder’s bid equals the expected price in the second auction, plus
a risk premium.

ProposITION 3 (Declining  Prices). EB (X)) = EX;,, that is, the
expected price obtained in the first auction exceeds the price obtained in the
second auction. Moreover, if u is strictly concave, this inequality is strict.

The necessity of NDARA for monotonic pure strategy bidding functions
should not be interpreted to mean that the declining price anomaly fails in
the DARA case. With DARA, the bidders will randomize their bids in the
first period, but the expected value may exceed the price obtained in the
second period. This occurs in our example of a mixed strategy equilibrium
in Section §.

4. Twice REPEATED FIRST PRICE AUCTIONS

Repeated first price auctions are significantly more difficult than the
second price case because bidders lack a dominant strategy in the last
period. As a result, it may matter whether the price obtained in the first
auction is announced to the remaining buyers or not. In particular, a buyer
who bids less than his equilibrium bid in the first auction may learn that
he has the highest valuation if the winning bid is announced. On the other
hand, if the winning bid is not announced, then losing bidders know only
that the winning bid exceeded their bid, which produces different informa-
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tion for the different bidders. We will assume that the winning bid in the
first auction is announced prior to the second. This is in accord with
government procurement statutes (see [5]) and with practice in some
auctions.

In the second round of bidding, bidders will know their own value and
the bid of the first period winner. We will use b, (x) to represent the bid of
a buyer with value x in the first auction, and b,(x, Y,) to represent the
second period bid when the first period bidder bid 5,(Y,).

PROPOSITION 4. [Increasing equilibrium bidding functions b, and b, exist
if w displavs nondecreasing absolute risk aversion, and do not exist if u dis-
plays decreasing absolute risk aversion. If u displavs nondecreasing absolute
risk aversion, then b,(x, Y, ) does not depend on Y|, and we suppress Y,. b,
is given by h,(0) =0 and

(n—2)f(x) ulx—h,(x))

) = T W b)) @)
b, is given by b,(0)=0 and
b () = (n—1)f(x)u(x —b;(x))—ul{x—b,(x)) (5)

F(x) w{x—>b(x))

Remark 4. The characterization for existence is not quite as tight as in
the second price case. It appears possible for buyers to have increasing
absolute risk aversion with low values, and decreasing with high value, and
for monotonic equilibrium bidding functions to exist. However, we see
that everywhere decreasing risk aversion is inconsistent with the existence
of pure strategy symmetric equilibria. As before, equilibria exhibit the
declining price anomaly.

ProPOSITION 5 (Declining Prices). If u displays nondecreasing absolute
risk aversion, then Eb (X )= Eb,(X5)).

There is an interesting relationship between the bid B, in the first of two
second price auctions and the bid b, in the second of two first price
auctions, which is developed in the following result.

PROPOSITION 6. If u displays constant absolute risk aversion, then
B, (x)=b,(x), for all x. If u displays nondecreasing absolute risk aversion,
then B,(x) < b,(x), for all x.

The final result of this section ranks the auction types with respect to the
seller’s revenue. It presumes nondecreasing absolute risk aversion, so that
the bidding functions represent equilibria.
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PropOSITION 7. Eb (X)) = Eb,(X5)) 2 EB|(X;) 2 EX,. Thus, in
both periods, the sequential first price auction produces a higher expected
price than the sequential second price auction, which in turn produces higher
prices than the simulianeous third price auction.

5. MIXep STRATEGY EQUILIBRIA—-AN EXAMPLE

If bidders do not exhibit increasing absolute risk aversion, then pure
strategy equilibria with monotonic -bidding functions may not exist. This
section characterizes the mixed strategy equilibrium of an auction with
bidders displaying decreasing absolute risk aversion.

Consider a repeated second price auction. As before, equilibrium
behavior in the last period is simply to submit a bid equal to the bidder’s
valuation. Suppose, though, that bidders follow a mixed strategy for their
bids in the first period. Let the strategy of a bidder of type - be such that
¢(b : 2) 1s the probability that type - submits a bid of » or lower. The joint
distribution of x and b then is

G(b, x) = L‘ $lb =) f(2) d- (6)

LEMMA 8. If all bidders follow a symmetric mixed strategy given by
@(b : ), then the expected utility to a bidder of type x from a bid b is

5
Vb, x)=(n— I)J( u(x —B)G(B. xy)" > Gy(f. xpy) dp

H=1) [ GulBoxu) | (n=2yutx—y)

XG,\‘(ﬂ’ ,") G([;’ _V)” 3¢1' dﬂ (7)

The proof is omitted, but to understand the expression, note that
G(B, x,)" ' is the unconditional probability that only bids less than
p are made in the first round by the n—1 other bidders and
[G(B, y)/G(B, x;;)]" " 2 is the probability that all n—2 remaining types
have valuation less than y given that a bid f won in the first round. Thus
the expression is just the sums of the expected value of the first round and
the second round.

For it to be a best response for a bidder of type x to submit a bid 4, then
the first order conditions from (7) must be satisfied. We must have

u(x—b)Glb, xpy)' 2= L ulx —y)n—2)G(b, v)" *G.(b,y)dy. (8)
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Let B(x)=inf{b :g(h: x)=1] denote the supremum of the support of type
x’s mixed strategy.

LEMMA 9. Suppose f(x) is increasing and ¢(b:x) is a nonatomic
distribution, increasing for all be [0, B(x)], then B(x) must sarisfy

u(x — p(x)) _ Joulx—y) F'" 2(3) f(y) dy
W(x—B(x) fsu'(x=p)F () fy)dy

Note that (9) provides a simple characterization of the upper end of the
support of the mixed strategy bidding function. In particular, if bidders use
only pure strategies, (9) yields Eq. (2) in Section 3.

For the remainder of the section, consider the special case, f(y)=1,
n=73, and u(w)= w?; that is, bidders exhibit constant relative risk aversion
but decreasing absolute risk aversion. The unique B(-) which satisfies (9)
is B(x)=x/(1+x). However, it can be shown using Lemma A2 in the
Appendix that if all bidders were to follow this pure strategy bidding func-
tion, any one bidder of type x does strictly better by lowering his bid.
Nevertheless, there exists a symmetric, mixed strategy equilibrium bidding
function with upper end of the support, f(x).

(9)

PrOPOSITION 10. Let

2 z 12 M
mm‘)'-")—;[arcsm((x) )_ 3x -2z ]

for z€ [0, x] and one for z> x. For the twice repeated second price auction
game with n=3, u(w)=w> a =14, f(y)=1, a strategy profile in which a bid-
der of type x sybmits a bid less than or equal to B(z)=2z/3 with probability
M B(z) : x) forms a Nash equilibrium.

In this case, which exhibits sharply decreasing absolute risk aversion, the
declining price anomaly is present. The expected value of the price in the
first auction is 0.29686, while the expected value of the price in the second
is 0.25023.

6. THE EMPIRICAL SIGNIFICANCE OF THE DECLINING PRICE ANOMALY
We obtained data from Christie’s wine auctions in Chicago in 1987.

These data represent four distinct auctions.> There were 411 instances
where the same wine was sold more than once in the same auction. In 177

> The auctions occurred on February 7, April 11, October 27, and December 5, 1987.
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TABLE 1
Chnistie’s Chicago 1987 Repeated Wine Sales Statistics

Auction: First Second
Means: $724.66 $714.35
Mean Std. dev. of mean
2nd;1st 09922 0.000276
Direction Rose Fell No change
Ist vs 2nd: 15% 31% 54%
tst, 2nd, 3rd: ¢ 12% 33% 55%*

“ Total of 177 sales.
* Includes up then down and down then up patterns.

instances, we obtain three prices for the same wine in the same auction. We
treat the same wine sold at a different auction as a distinct product. It is
important to understand that the products we are treating as homogeneous
are indeed homogeneous; they represent wines of the same vintage of the
same wine sold on the same day in the same city.

Table I provides summary statistics for the last two sales of each wine.
Note that the declining price anomaly is present; a wine sells for an average
of $724.66 in the first auction, and $714.35 in the second, a difference of
$10.31, or approximately 1.4%. This is reasonable magnitude to be
attributed to risk aversion.

To test formally that the declining price anomaly is present, we follow
[1] and examine the ratio of prices, and the proportion of times prices
rose, fell and remained constant. As shown in Table I, the ratio of the
second price to the first is 0.9922, which is different than 1 with a r-statistic
of 28.3. These numbers are similar to those found by Ashenfelter. Now look
at the instances where the price rose, fell, and stayed the same. In 127
instances, or 31%, the price fell. In 62 instances, or 15%, the price rose,
and in the remaining instances, it stayed the same. These numbers are also
similar to those found by Ashenfelter.® Consider the trinomial variable
which is 1 with probability p, —1 with probability p, and 0 with probabil-
ity 1 —2p, where 1, — 1, and O refer to prices rising, falling, and remaining
the same. The probability of observing data as extreme as that observed
(1.e., at least 127 instances of falling prices and no more than 62 instances
of rising prices) is

622: Mik—————————mn kri(1—2p)¥t % /x0.00003
- K@ —k—pt? i Dt

0 =127

! Data from auctions in 1990 exhibited similar behavior although there is some indication
that the absolute value of the fall in price is no longer so large.



THE DECLINING PRICE ANOMALY 201

+ ) e
/'/// -
+ 7 -
5 + L |
i » (
)
H ¥ ‘
v o
] £ i
Tk J
|
foee : - pr i v N 1
0 | 2 K) 4
First Price

FiG. 1. Second price on first price (in thousands of dollars).

Thus, the probability of observing this kind of split between the number
of falling prices and the number of rising prices is much less than one
percent.* Thus we overwhelmingly reject the hypothesis that prices are
equally likely to rise as to fall, in favor of the existence of a declining price
anomaly, that prices are more likely to fall than to rise.

A similar outcome arises when we look at the data for three sales. The
first auction had a higher price in 33 %, a lower price in 12%, and the
same price in 55% (this case includes those situations where the two price
changes were in opposite directions) of the 177 cases where three sales of
each wine occurred. Because of the reduced sample size, the effect is not as
significant.

Figure ! provides a scatterplot of the second price as a function of the

* This estimate of the probability was computed using a normal approximation. Note that
the mean of the trinomial is 0 and the vanance is 2p. The sample mean is 65/411 and the
vanance of the sample mean is 2p/4ll. Since p<(27/41[, we have Pr(X>6541l}x
Prob(Z > (65/411)/(2p/411}'*) < Prob(Z > 4.08) = 0.0000292.
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first price. The curves through the data represent the forty-five degree line
and the result of a regression of the second price on a quadratic finction
of the first price.”

7. CONCLUDING REMARKS

The necessity of nondecreasing absolute risk aversion for the existence
of pure strategy monotonic bidding functions suggests that in sequential
auctions, at least, it is not always the case that objects end up in the hands
of those who value them the most. In a way, this result may not be so sur-
prising since with risk aversion, an auction really offers two types of
“goods”—the object to be traded and risk. An object cannot be traded
without some imposition of risk on the bidders. The ex ante welfare conse-
quences of the allocation generated by a sequential auction have to take
into account the relative allocation of risk among agents with differing
attitudes to risk. The fact that a sequential auction may lead to ownership
of a good by someone who values the good less than another losing bidder
is not in itself evidence of ex ante inefficiency. Nevertheless, it is the case
that in single period auctions, with ex ante symmetry, goods are allocated
to those who value them the most so there is never an incentive for a buyer
to attempt to resell the object. This is not true in sequential auctions with
DARA and it is an open question what might occur in sequential auctions
if retrading were allowed.

One would like to have a characterization of equilibrium bidding
strategies for general n-period auctions. While the characterization of
bidding functions via the first order conditions is easily extended to this
case, the verification that these functions satisfy sufficient conditions for a
maximum becomes more complicated and we have not been able to come
up with a clear generalization. Finally, it would also be desirable to be able
to characterize equilibria for general utility functions. The difficuity of
computing the equilibrium mixed strategies just in the simple example of
Section 5 suggests that such an exercise would be a daunting one.

5 This regression produces an R? of 0.989 and the following estimates:

Term Coefficient t-statistic
Constant ~30.0 5.1
Linear 1.09 101
Squared ~0.00006 15

Thus the data indicate that the size of the afternoon effect is increasing and concave in the
range of the data.
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An even more ambitious task requires characterizing equilibrium bidding
strategies when risk averse bidders may wish to purchase several of the
objects. Since this structure subsumes the present study, bidder randomiza-
tion will be a feature of the more general and realistic model.

APPENDIX

Two mathematical lemmas are used several times below. The first was
proved by Guesnerie and Laffont [2] in the generality used here; however,
special cases were used by several authors, notably Myerson [8] prior to
this. Subscripts are used to denote partial derivatives.

LemMMa Al. Suppose v:[a, b] — R is twice continuously differentiable.
Then

(Vr)(¥x) v(r, x) < v(x, x) implies (A1)
(Vx) v (x, x)=0and (A2)
(Vx) via(x, x) 2 0. Moreover, (A2) and (A3)
(Vr)(Vx) vy (r, x) =0 imply (A1), (A4)

A version of Lemma A2 appears in [3].

LEMMA A2. Suppose u:R-—R is thrice continuously differentiable,
increasing, and concave. Then u(c)= Eu(X) implies u'(c)=(>, <, <)
Ew'(X) for all real valued random variables X if and only if u satisfies non-
decreasing (increasing, nonincreasing, decreasing) absolute risk aversion.

Proof. Let Y=u(X), and c=u""(E[Y]). Then
u'(c)= E[u'(X)] if and only if #'(u " (E[Y]))= Eu'(u"'(Y)).

This holds for all random variables X if and only if «’(x~'(-)) is concave,
or if u”(u”'(-))/u'(u""(-)) is nonincreasing. Since u ' is increasing, this is
equivalent to —u"(-)/u’(-) is nondecreasing or NDARA. The other cases
are similar. |

Remark Al. Define the risk premium R(W) for a mean zero gamble X
by Eu(W + X)=u(W — R(W)). Differentiation yields

oo EW(WAX)—u'(W=R(W))
R(W)= — RO . (A5)

642/60/1-14
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Lemma A2 is equivalent to stating that R'(W) is positive (negative) if and
only if » displays increasing (decreasing) absolute risk aversion.

Proof of Proposition 2. Necessary conditions. Suppose that B, (-) is a

monotonic symmetric bidding function for period one. By (1), bidder one
of type x chooses to bid as type r, he receives, if r > x,

Virx)=(n=1) | ulx=B, () F" 200 () dy

=)0 =FO) [ s =)= D P00V (A6)

and if r <x,

Virx)= [ ute= By ()= 1) F'720) () dy
+ (1= 1)(1 = F)) [ e y)n=2) 0 S () dy

t=D [ =2 [ ubc—y) P S e f ) vy (AT)

¥
r 0

Differentiating either (A6) or (A7) and setting V,(x; x)=0 yields (2).

The necessary second order condition for B,(x) to be an optimal
response for bidder type x is, from Lemma Al, V,;(x, x)>0. Both (A6)
and (A7) yield

; —2) P ) Sy
"(X—B|(x))=f0 u(x—y)(n )erz()(c;)f())

dy

which implies

(n=2)F" *(»)f(»)
F3(x)

u'(x—Bl(x))ZL: W(x—y) dy.

Lemma A2 and the definition of B,(-) in (2) then yields that NDARA is
necessary for the first order condition definition of B,(-) to be an optimal
response for all random variables, and that DARA contradicts the
optimality of B, for any F.
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Sufficient Conditions. From (A6), if r = x,

Via(rix)=f(r)(n—1) <u'(x— By(r)) F'"3(r)—(n—2)

x f W(x—y) F" () f(y) dy)

[¢)
> f(r)(n—1) (u'(x— By (x)) F' ()= (n—2)
x J u'(x—y)f(y) d.l')
1]
=0.

From (A7), for r < x, we need to show V (r, x)=0, or,

(n—2)F" (y)f(y)
F'2(r)

ux—B,(n)> | ulx—y) dy.

Fix r and define ff(x) by

(n=2) F" () f(») d

= B = [ ut =)
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(A8)

(A9)

(A10)

Note that f(r) = B, (r) and that f(x) is the expected value of y plus the risk
premium associated with “income” x (the support of y ranges from 0 to r).

NDARA then gives us f(r) < f(x) so

u(x — By (r)) =u(x — (r)) 2 u(x - B(x))

(n=2)F" () f)
F2(r) 4

L]

= Jor u(x—y)

which yields the result. |}

Proof of Proposition 3. This follows from (2) since

X—B(x)=FE{x~X,.. 2|X(1.n.2<x}—Risk premium,

or,
BiUxX)ZE{X ., »: X 2<x},
and thus,
EB(X)ZE{X ., X1, <X =E{Xs5} 1

(All)
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Proof of Propositiond4. Assume that there exist monotonic bidding
functions, b,(-) and b,(-, -), b,(-, y,) defines a symmetric monotonic and
differentiable equilibrium bidding function in the second auction when all
bidders know the value of Y,.

I. Perid Two Strategies. Suppose that bidder 1 bids b=5,(r,, y,) In
period two. His final period expected return is

F(r,)

u(-“”z(’w)’x))(m) h if ra<y,
by

V3ry;x, p,) = (A12)

u(x—by(ra, 1)) if ry>y,.
The first order condition is 0= &V *(x; x, y,)/r,, which yields, for r, <y, ,
0= —u'(x—by(ry, ¥)NChy(r =2, p,)/0r,) F'~ 2(ry)
+u(x = by (ry, y W =2) F' 73 (r) f(r2)l,, - - (A13)
This yields
(n=2) f(x) ulx—by(x, 3,))

7 s if x-g.}'l
Bby(xyyyr,={ T wle=hatnn)) (Al4)

0 if x>y,

with the boundary condition, 5,(0, y,)=0. b,(-, y,) is increasing and is
independent of y, for x < y,, bo(x, ¥,)=b,(x). If x>y, (Al4) implies that
by(x, y,)=b,(yy, yy). Note that

Vi x, y,)/0r 8x= —u"(x—by(r)) b'z(r)( Hr) >n 2
F(,VI)
— n-3
ety R 50 ars)
1

so the necessary conditions for an equilibrium strategy defined in (A14) are
sufficient as well, by Lemma Al.

11. Period One Strategies. Necessary Conditions. Now fix the equi-
librium bidding function in the second auction b,(-), defined in (A14), and
fix a candidate bidding function in the first period b, (-).

Subgame perfection requires that whatever bidder 1's behavior in the
first auction, if b,(-) is the equilibrium bidding function in the second
auction, he will bid b,(x). Recall that b, is independent of y, whenever
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x<y,, but if x>y,, then the agent bids b,(y,). Therefore, if r, > x, the
agent’s expected utility is

Vi(ry, x)=u(x—by(r))) F''(r) + (n = 1)(1 = F(ry)) u(x — by (x)) F" ~(x).
(A16)

And if r; <x,

Vi(re, x)=u(x—b,(r\)) '~ !(ry) + u(x — by(x))(n— 1)(1 — F(x)) F*~ *(x)

[ ule by )= 1) P2 fr) dv

ry

The first term in both (A16) and (A17) represents the event of winning the
first auction with a bid b,(r,). The second term in (A16) represents the
event of losing the first auction and winning the second, with a bid of
b,(x), since y, =2 r, = x. The second term in (A17) represents the event of
losing the first auction and winning the second because exactly one bidder
had a value greater than x, while the third term represents the case of
losing the first auction and winning the second because the highest value
of another bidder fell in [r,, x], so that y, < x, and the bidder bids b,(y,)
in this instance. The second term is independent of r,. The first order
conditions are slightly diffeent depending on r, > x or r, < x but they are
continuous at ry=x. If r, 2 x,

OV (ry, x)/0r, = —u'(x=by(r))) b\ (r) F''(ry)
+ulx —by(r))n—1) F'*(r)) f(r,)
—(n—1)ulx—by(x)) F"~*(x) f(ry). (A18)

and if r, <x,
aVi(ry, x)or = —u'(x—b (r)))bi(r)) F"~ Y (r})
+u(x=by(rNn—1) F2(r ) f(r))
—(n= D u(x—by(r)) Fr) f(r,). (A19)

As r, approaches x from either above or below, (A18) and (A19) approach
the same value, so setting either (A18) or (A19) equal to zero at r;=x
yields the same first order conditions defining a candidate solution of
b (x):

by = (1= D) =By (0) s =By (0)
Y F) u'(x —by(x)) :

(A20)
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Sufficient Conditions. From (A19) and (A20), if r, <x,
AVi(ry, x)ory=(m—1)F (r)) f(r))u'(x—b,(r)
y [u(x_bl(rl))_'u(x_b2(rl))

w(x—>5b(r))
u(r,—b(ry))—ulr, —bz("l))]
- . A21
u(ry—=>b(ry)) ( )
Equation (A21) can be signed with the use of the following lemma.
LEMMA A3. u exhibits NDARA implies that
H(ﬂ)zﬁu(x—of)—u(x—ﬂ)zo'
ox u(x—a)
Proof. I1(f)= Wix—a)—u'(x—p) _ (u(x —a)—u(x— [3)2) u(x— oz)'
u'(x—o) u'(x—a)
Therefore
oy Wx=B)(u(x—f) u(x—a)
= u'(x—o) (u'(x -p) w(x— 0!))'

NDARA then implies that /T'(f) is greater than zero if and only if f is
greater than o, so [7(-) is minimized at f=a and I7(x)=0. 1

Lemma A3 yields the result that NDARA implies that the bracketed
term in (A21) is greater than zero. Thus a bidder of type x can always do
better than a bid b,(r,), r, < x, by increasing his bid to b, (x).

From (A14), (A18), and (A20), if r, = x, we have

2V r,, x)/0x ér,

=(n—1)F z(rl)f(r])
Fx)\?
F(’l))
u (x—by(r\))
u'(ry—=b,(r))

X [u’(-’c—h.(rl))—u'(x—bz(-r))(

 Culry— by (r1)) — ulry — by (r )] ] (A22)

2 (n—1) F'=2(r) f(r))

x[wu_ban»—wu—bAn»

u(x—>b(ry))

= [u(x = b, (r))) —ulx—b,(r)))] W bi(r ))]- (A23)
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The inequality comes from applying Lemma A3 to the second line of
(A22), noting that —u"” =0, from the fact that F(r,) > F(x) and from the
fact that u'(x — b,(x)) <u'(x — b,(r,)) because of concavity.

LEMMA A4, Let p(a)= — (u"(a)/u' (o)) [w(a) —u(B)] + v (2)—u'(f). Then
u(-) exhibits NDARA implies that p(a) 20 for a = p.

Proof. p(B)=0 and

0 u"(a)
o u(o)

p'(a) = — [ula) — u(p)] =0. 1

Lemma A4 along with the fact that b, (r,) < b,(r,), from (A20), implies
that (A23) >0 for r, = x. Equation (A21)>0 for r, < x and (A23)=0 for
r, = x then implies that NDARA is sufficient for a bid b,(x) to be a best
response in period one for a bidder of type x. This establishes sufficiency of
NDARA. To see that DARA is inconsistent with the existence of pure
strategy bidding functions, note that the inequalities in Lemmas A3 and A4
are reversed with DARA. Therefore, the bracketed term in (A21) is less
than zero, if DARA holds, which violates the necessary condition that,
locally for r, < x, ¢V'/dr,=0. 1§

Proof of Proposition 5. Fix a second period equilibrium bidding
function, b,(-) and define a function, b{(-) with ¥ (0)=0, and

Fr 0 ute=b1 () = [ ulx=b()n= 1) 200 [0 dy. (A24)

Differentiating (A24) with respect to x and rearranging terms gives

(n—1) f(x) ulx —b¥(x))— ulx —by(x))

T =""F) W(x—b7 ()
Cw(x— by (1)) (n— 1) (9 £(3)
+('_Lu'(x—br(x)) F i(x) dy)' (A23)

Consider the term in large braces. By (A24), b¥(-) is defined as the
certainty equivalent for u(-) of the gamble defined by the right hand side
of (A24). Thus, NDARA implies that the term in large braces is negative
(Lemma A2). Now consider the definition of b,(-) from Proposition 2:

(n—1) flx) u(x — b, (x)) —u(x — b, (x))
F(x) u(x —b,(x)) '

b (x)= (A26)
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Since b#(0)=5,(0) and the differential equaiton defining b (-) via (A25)
implies that ¥ has a lower slope than b,(-), then NDARA implies

by (x)z b¥(x)forall x. (A27)

Therefore, since b¥ (x)=E[b:(X (1., 1)) : X101, < x] +r1isk premium,

E[b (X )12 E[bF(X1))] 2 E[by(X5)]. 1

Proof of Proposition 6. Differentiate (2) and solve for B} (x) to obtain
(n—2)f(x) u(x— B, (x))
F(x)  u'(x—B,(x))

* w(x—y) (n=2) F(_V)"faf(y) '
+<1_j‘0 ur(X—Bl(x)) F(x)n'vZ d}’)

B (x)=

The term in large braces is zero under constant absolute risk aversion, and
negative under JARA, by Lemma A2. Comparison with (A14) completes
the proposition. [

Proof of Proposition 7. The first inequality is Proposition 5. The second
follows from Proposition 6, and the third from Proposition 3. ||

Proof of Lemma 9. If f(x) is increasing, then G (b, y)=f(y) for y such
that S(y)<bh and G, (b, y)=¢(b, y) f(y) otherwise. From (8) we have, for
all z<x, b=f(z), by replacing x with z in (8) and eliminating G(b, x,),

x—b)
e P
- j “u(x—y) G(b, ¥)" P G (b, y) db. (A28)

Differentiating (A28) with respect to x and letting x go to z then yields
). 1

Proof of Proposition 10. Note that ¢(-:x) is increasing and that
$(0:0)=0, ¢(x:x)=1 so ¢(-:x) is a probability distribution function.
From (A28) for x >z, we have
_u(x—pB(z)) r*

[Tute=y) (B2 : ) dy = u(z — B(z)) %o

=T(x:z) (A29)

u(z—y)dy— fo u(x—y)dy
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Solving for the middle term in (A29), T is given by

1 AVx -z z ’1+l_ x—=z x+ 1
SN (LB E ) WS i k)
o* a+ 1 o+ 1

Note that ¢7T(z:z)/éx=0. Fix z, define T(x)=T(x:z) and S(y)=
#(B(z) : y). Multiply Eq. (A29) by (a— x)'" 7 integrate to a >z, using the
change of variables ¢ =(x — y)/{a — y} after rearranging the integrals,

f (a—x)' "*T(x)dx= J.u (a—x) = Jr (x ~3)* S(y) dy dx
= 8) [ S(Na—y)* dy, (A30)

where Ba)=[} £ (1 —¢&)' *deé.
Since (8*/(8a)*) [¢ S(y)(a — y)* dy =2S(a), the solution to (A29) is

(8°/(2a)’) f2(a—x)'~* T(x) dx

Sta)= 2B(x)

(A31)

Differentiating once with respect to a, integrating by parts using T(z)=0,
differentiating with respect to a, and integrating by parts vusing T'(z)=0
then differentiating one last time yields

¢(ﬂ(:):a)=5(a)=(2lB_(:)) :‘(a—x)”T”(x)dx
1—o ¢ x
=IBm ). 7Y
2_ - .y 2
x<(a l)a((zj—}),\ z) ba(x— ) eyt ‘)dx.

(A32)

Setting « = and integrating (A32) by Mathematica yields the equation for
¢ in the Proposition. It remains to show that a bidder can not do better
by submitting any other bid. Since ¢ satsfies bidder x’s first order condi-
tions for all bids less than x/(1 + «), we need only check whether a higher
bid is a better response. An argument paralleling the proof in Proposition 2
shows that no bid improves on the bids below x/(1 +«). |
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