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Extending the Revelation Principle to a case in which it is costly for the principal
to communicate with any agent, we show that there is a sequential direct
mechanism that is optimal in the class of all mechanisms. We then apply this result
to the problem of a monopsonist seeking to buy an indivisible good from one of a
set of possible sellers with unobservable production costs. With costly com-
munication, the monopsonist’s optimal procurement mechanism is a combination
of reservation-price search and auction. Journal of Economic Literature
Classification Numbers: 022, 026, 213.  © 1988 Academic Press, Inc.

1. INTRODUCTION

The traditional approach to modelling the optimizing behavior of a
monopolist or monopsonist is to take as given the selling or buying
policy—such as posting a fixed price, or choosing among various types of
auction, or searching sequentially—and to optimize within this given
institution. Thus one solves for the best price to post, or the best of the
given auction forms to use, or the best reservation price. A more fundamen-
tal approach is to optimize over institutions, without constraining the
allowable types of selling or buying policies. When should a monopolist
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choose to sell by auction; when should he post a fixed price? When is
sequential search the best of all possible buying policies? Optimization over
institutions is made possible by the application of the Revelation Principle.

Consider a monopsonist who wishes to acquire one unit of a good from
one of a set of possible sellers. The buyer has the ability to commit himself
in advance to his buying policies: thus he is endowed with considerable
bargaining power. His power to extract surplus is limited, however, by his
inability to observe the potential sellers’ production costs. In addition he
must incur a search cost in communicating with any potential seller.

The monopsonist designs his optimal buying mechanism. It is now well
known that, in the absence of communication costs, the mechanism that is
optimal for the monopsonist is a sealed-bid or oral auction, augmented by
a reserve price.! This paper will show that, with costly communication, the
optimal mechanism has the buyer approaching the potential sellers in
sequence: the optimal mechanism works like a marriage of sequential
search and auction.

Most existing search models have many buyers and many sellers.” The
assumption of a single buyer with commitment ability does not fit the usual
interpretation of search theory as representing people buying goods for
their own consumption. It might, however, represent a large industrial
buyer procuring inputs from other firms, or a government contracting out
to the private sector the production of a public good. It might also
represent the hiring process of a monopsonistic employer. There are several
ways a large buyer might achieve commitment. For instance, in the case of
government contracting, the government official responsible for the
decision is required to follow procedures that are explicitly and precisely
set out in a publicly available book of rules. Alternatively, reputational
effects might produce commitment: the cost to the monopsonist of reneging
on his announced policy might be the inability to credibly commit himself
in the future and the consequent loss of future bargaining power.

In most equilibrium search models, the sellers are Stackelberg leaders
and the buyers are Stackelberg followers: in other words, the sellers are
assumed to be able to commit themselves to their price offers. The present
model reverses the usual commitment assumption: the buyer leads and the
sellers follow.?

The search cost can be given its usual interpretation as the cost of
locating and contacting potential sellers. Alternatively, in the contracting
interpretation, it might be the cost of checking that a potential supplier is

!Myerson [15], Riley and Samuelson [18], McAfee and McMillan [11].

2 Exceptions to this statement, search models with small numbers of agents, include Carlson
and McAfee [2] and Reinganum [17].

3In the model of Wilde [22], the buyers and the sellers move simultaneously.
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capable of doing the work for which he has bid. Or it may be that there is
competition over design as well as price, so that the bids differ in several
quality dimensions as well as in price. The buyer must reduce these mul-
tidimensional characteristics to a single-dimensional comparison in order
to decide which is the best offer. This may be time-consuming and therefore
costly to the buyer.* In the job-market interpretation, the search cost might
represent the cost to the employer of checking the credentials of a potential
employee.

In the usual formulation of the Revelation Principle, information, though
asymmetric, can be transmitted without cost. In Section 3 we extend the
Revelation Principle in the generalized principal-agent framework of Myer-
son [16], with both adverse selection and moral hazard, to a case where
communication is costly for the principal. We show that a sequential direct
mechanism is optimal in the class of all mechanisms. In a sequential direct
mechanism, the principal asks the agents their types (and nothing else) in
sequence. At any time the principal may stop asking agents their types, so
that he need not communicate with all of the agents. In addition, it can be
assumed without loss of optimality that those agents who are asked reveal
their types truthfully and execute the decision the principal recommends for
them. Thus, one can construct an optimal mechanism by optimizing over
the class of sequential direct mechanisms subject to the usual incentive-
compatibility constraints.

The extended Revelation Principle is then applied in Section 4 to the
monopsonist’s search problem. The main result is that the monopsonist
sets two cut-off cost levels x, and x*, with x,> x*, and proceeds sequen-
tially. If he finds a seller with cost less than x*, he immediately buys from
that seller; otherwise he continues searching. If he exhausts the entire set of
potential sellers, he buys from the lowest-cost seller, provided his cost is no
higher than x, (where x, is determined by the buyer’s fallback option—
in-house production, say). The price the monopsonist must pay is the
expected second-lowest cost.

In the limiting case of infinitely many potential sellers, the optimal
mechanism is pure reservation-price search.” When the cost of communi-
cation goes to zero, the mechanism reduces to the usual optimal auction.
Thus reservation-price search and auctions are inherently related, in that
each emerges as a special case of the same mechanism.

In the job-market interpretation, the optimal mechanism works as
follows. The employer, at some cost to himself, evaluates the credentials of

4These costs can be large in practice. For example, Fox [4, p.269] cited a U.S.
Department of Defense contract in which government personnel spent 182,000 man-hours
evaluating proposals from four prospective contractors.

5 Riley and Zeckhauser [19] previously obtained this limit result.
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the job applicants one at a time. Suppose the applicants’ abilities net of
their opportunity costs can be measured on a single-dimensional scale. If
an applicant’s qualifications are evaluated by the employer as being inferior
to the cut-off level x,, he is immediately rejected. If an applicant is judged
to be better than the cut-off level x*, he is immediately hired. If his
qualifications put him between x, and x*, he is told “don’t call us, we’ll call
you.” Then, if no applicant who is better than x* has been found by the
time all potential employees have been interviewed, he is offered the job if
he has the best available qualifications.

In the case of government procurement, the government agency faces a
“make-or-buy” decision: our theorem has the common-sense implication
that the buyer rationally produces the item in-house if the search cost is
relatively high and the cost of in-house production is relatively low. One
controversial aspect of U.S. military procurement is that a majority of con-
tracts are let on a sole-source basis (Fox [4]): the theorem shows that
there are combinations of the search cost and the distribution of bidders’
production costs such that it is rational to solicit only one bid. Otherwise,
according to the theorem, bids should be solicited in sequence. Also, there
are circumstances under which minimizing procurement costs requires the
government to produce the item in-house even after having found a firm
which could produce it with a lower production cost (because the price it
would have to pay the firm is higher than its in-house production cost).

Note that the model of this paper is an equilibrium search model
(although the notion of equilibrium is not the usual search equilibrium®).
The buyer’s and the sellers’ optimization give rise to a dispersion of price
offers in equilibrium. Why does the usual argument (due to Diamond [3];
see also Rothschild [207]), that search costs result in all sellers charging the
monopoly price no matter how many sellers there are, not apply here? In
the Diamond argument, any price less than the monopoly price cannot per-
sist in equilibrium because a seller known that, once the buyer has incurred
the search cost and has received his price quotation, he can slightly raise
his price and it remains in the buyer’s interest to accept the higher price
rather then incur further search costs. The argument does not apply here
because we have endowed the buyer with commitment ability. The seller
does not raise his price above the reservation price because he knows that
the buyer has irrevocably committed himself not to pay more, even though
it may be in his ex post interest to pay more. Thus the buyer’s commitment
eliminates the Diamond monopoly-price equilibrium.

6 On equilibrium price dispersion, see Burdett and Judd [1], Carlson and McAfee [2] and
the references therein.
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2. SEARCHING FOR THE LOWEST BID

A monopsonist wishes to buy one unit of an indivisible good. The buyer
is assumed to be able to commit himself to a purchasing policy. There are n
potential sellers, who vary in that they may have different production costs,
which only they themselves know (or, in the job market interpretation,
different potential employees have different abilities net of oppotunity
costs). Denote a seller’s production cost by x, and suppose that costs are
identically and independently distributed” as F(x), with F'(x)=f(x)
and Fe C!, F(0)=0. The buyer is able to produce the good himself at a
commonly known cost of z, > 0. (The case in which the buyer has no such
option is represented by z,= c0.) Both the potential sellers and the buyer
are risk neutral.

The buyer incurs a cost ¢>0 every time he contacts a potential seller.
Assume that he cannot avoid incurring the search costs by, for example,
publicly advertising the price he would be willing to pay.

Define a function J by

_ . Fx)
\Akv|k+au AHV

and assume J is strictly increasing on {x|0<F(x)<1}. (This is the
analogue—for buying as opposed to selling—of the J function of Maskin
and Riley [9] and the ¢, function of Myerson [15]: it is assumed to be
strictly increasing for the same reason as in those papers.) Define
xo=J""(z,). Since the function J will figure prominently in the analysis
that follows, the following lemma is useful as an aid to understanding.

LeEMMA 1. Let s' represent the ith order statistic of the set of seller’s
costs. Then .

E[J(s')]=E[s*]. ()
Proof. The density of the second order statistic is

n(n—1)[1 = F(x)]"7*F(x) f(x).

7This is an independent-private-values model, in the terminology of Milgrom and Weber

[12].
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Thus the expected value of the second order statistic is

mmn Hs §¢TEHlmQ:Tﬁi\E%
0

- Hs [xF(x)] % [1—F(x)]" ! dx

0

—mxFCOLL = F) 17 [+ | o/ + F) 101 = F) 1~ d

Il

mo 5::-55?_35. 9

Thus, since n[1 — F(x)]"~'f(x) is the density of the first order statistic, (2)
holds. Q.E.D.

It follows from Lemma 1 that the expected difference between the lowest-
cost seller’s cost and the second-lowest-cost seller’s cost is the expected
value of F(x)/f(x). Thus, by the usual auction-theory intuition (see McAfee
and McMillan [11]), the winning bidder’s expected profit is the expected
value of F(x)/f(x) and his expected payment is the expected value of J(x).

F(x)/f(x) is therefore to be interpreted as the expected informational
cost borne by the principal, resulting from the sellers’ private information.
Note, however, that the amount paid to the successful seller is not J(x).
The seller has an extra piece of information: he knows his own cost. The
seller will quote a price equal to his expectation of the next-lowest cost,
conditional on the level of his own cost: this price will be derived in
Theorem 9 (Eq. (27)). Only in expectation does this price equal J(x).

To be applicable to this problem, the Revelation Principle must be
generalized to admit communication costs. This is done, in a model which
is more general than the procurement problem just stated, in the next sec-
tion. Much of the terminology, notation, and method of analysis used in
Section 3 is borrowed from Myerson [16]. (The reader prepared to accept
that the Revelation Principle, suitably modified into a sequential form,
does apply to a model with communication costs can skip the next section
and go directly to Section 4.)

3. TBE REVELATION PRINCIPLE WITH COSTLY COMMUNICATION

There are n < co agents, indexed by ie N= {1, 2, ..., n}, who behave non-
cooperatively. Denote by @ the set of ordered subsets of agents:
Q= {(iy, s iy) | k<n, 1<i;<n, and j<m<k=1i;#1i,} Agent i has type
t;€ T;, which only he can observe. Let T=X,_,T;. There is a probability
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distribution P: T— [0, 1] which is common knowledge, and we assume
that, given his type f;, agent i uses the Bayesian posterior of P as the
probability of the vector types. Agent i can make decision d;e D;; the
principal cannot directly control the agent’s decision.® The principal
makes a decision dyeD,. Let D=X?_,D, The agents have von
Neumann—Morgenstern utility functions U;: Dx T — R.

Since communicating with an agent is costly for the principal, the prin-
cipal’s utility depends upon his communications. We shall assume that his
utility depends only on the set of agents actually communicated with and
on (d, t)e D x T. Suppose that, once the principal has communicated with
agent i, there are no additional costs incurred for further communication
with agent i (It will be shown that this restriction is without loss of
generality.) Let Uy: D x T x 2 — R be the principal’s utility function. Thus,
we are in essence assuming fixed costs of communication. Although com-
munication costs vary with types and decisions, they are invariant to the
actual message sent.’

We seek to show that Revelation Principle extends to the case of costly
communication. Why might it not hold; why might truth-telling not be an
equilibrium? Essentially, the Revelation Principle must apply if there is
nothing the principal can do to avoid bearing the communication cost. We
ensure this by placing two restrictions on the nature of the communication.

We firstly restrict attention to what we shall call principal-centered
mechanisms; by this is meant that the only type of communication that
takes place is agent-to-principal of principal-to-agent. If, on the contrary,
agents were allowed to communicate among themselves, it would be in the
principal’s interest to incur the cost of communicating with only one agent,
and to have that agent learn the types of the other agents. (It appears to be
intractable to make agent-to-agent communication possible but costly.)
Note that, in the absence of communication costs as in the usual for-
mulation of the Revelation Principle, allowing only communication
between principal and agent is not a restriction, because the principal could
commit to passing signals from agent i to agent j without himself observing
the signal (that is, the principal would commit himself not to condition any
of his future signals or decisions on this communication). Thus there is a
sense in which the restriction to principal-centered mechanisms is no less
general than the usual Revelation Principle analysis with costless com-

8 In the search problem stated in the last section, there is no decision for the agents to take.
Nevertheless, in this section’s extension of the Revelation Principle we allow for the possibility
of decisions by the agents for the sake of generality and comparability with Myerson [16].
Such decisions could be added to the model of Section 2 by giving the selected seller some ex
post control over the cost he incurs, as in McAfee and McMillan [10].

° For analyses of the case in which the cost of communication does depend on the size of
the signal sent, see E. Green [5] and J. Green and Laffont [6].
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munication, in that the usual analysis can be interpreted as being principal-
centered. Note also that there is a relationship between the assumption of
no agent-to-agent communication and the assumption that the agents
behave noncooperatively, in that communication is a prerequisite for
cooperation in a static game: in this sense, the absence of agent-to-agent
communication is a sufficient condition for noncooperative behavior.

We also restrict attention to what we shall call principal-initiated
mechanisms. This is to avoid the possibility that the principal might use the
mechanism itself as a communication device and in so doing avoid incur-
ring the costs of communication. For example, suppose the principal
wishes to buy a good and chooses a mechanism that dictates that he will
accept the first bid of not more than x* that he receives from an agent.
Then any agent who values the good at less than x*, knowing that is the
principal’s decision rule, will submit a bid of x*. The principal then accepts
the first bid he receives and shuts off communication, incurring the cost of
only one communication. In this example, the mechanism itself com-
municates the value x* costlessly to all agents. In a principal-initiated
mechanism, this cannot happen. A mechanism is principal-initiated if no
communication occurs between the principal and a particular agent unless
the principal first sends a message to the agent; agents never initiate com-
munication. (For example, one may imagine that the principal must con-
tact the agent, explain the mechanism to him, and demonstrate that he is
bound to it.) We assume, then, that if the principal does not communicate
with agent i, then agent i chooses a decision d(t,), which is the same regar-
dless of which mechanism the principal has choosen.

To the extent that communication takes time, the principal and the
agents are assumed not to discount future returns (or, alternatively, the
communication process is sufficiently fast that discounting can be ignored
as an approximation). Thus simultaneous communication can be ignored
without loss of generality. The principal has the option of mimicking a
simultaneous mechanism by receiving the communications sequentially but
committing himself to make no use of the information until all of the infor-
mation is received; that is, until the “simultaneous” information is fully
received, no action or signal of the principal is conditioned on the initial
information. Hence in what follows, attention will be restricted to sequen-
tial mechanisms. At some increased notational complexity, real time could
be included in the communication model. This would in general lead to
simultaneous signals, as in the search model of Morgan [13] and Morgan
and Manning [14]. The extension to this case is straightforward if it is
feasible for the principal to delay sending signals. Indeed, the proof of the
Revelation Principle is consistent with this case.

A principal-initiated, principal-centered mechanism allows an exchange
of signals between the principal and some or all of the agents and, when
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this exchange of information has ended, culminates in a vector of decisions
(do, dy5 .y d,,) € D.

In a direct mechanism, each agent simply reports his type from T, to the
principal, who responds by suggesting a decision from D, for the agent. In
a sequential direct mechanism, the principal communicates with the agents
one at a time. An agent is honest if he correctly reports his type when
asked. An agent is obedient if he takes the decision recommended by the
principal. The sequential direct mechanism is incentive compatible when
honest and obedient strategies form a Bayes—Nash equilibrium.

We now show how the Revelation Principle extends to the case of costly
communication. A direct sequential mechanism is optimal in the class of all
principal-initiated mechanisms.

LemMma 2. Corresponding to any equilibrium o for any principal-initiated
mechanism y, there is a direct sequential incentive-compatible mechanism u*
in which, for each vector of types t€ T, an honest and obedient strategy c*
produces the same distribution of decisions and agents communicated with
(d, w), de D, we Q.

The result is proven in the Appendix, following Myerson [16].

The foregoing analysis assumed that the principal incurred a cost only
upon the first communication with any particular agent. However,
Lemma 2 showed that the principal need only communicate at most twice
with each agent; either not all, or once to ask his type and once to suggest
his decision. Clearly, therefore, if the second and subsequent com-
munications with any one agent are costly to the principal, the principal
optimizes by using a direct sequential mechanism. The assumption that
only the first communication with any agent is costly for the principal is
therefore without loss of generality.

4. THE MONOPSONIST’S OPTIMAL MECHANISM

We return now to the problem of procurement with search costs stated
in Section 2. From Lemma 2, we know that there is an optimal direct
mechanism that has the buyer sequentially asking the potential sellers their
types (production costs), x. Let the subscript i denote the ith potential
seller asked. Let x4, ..., x,, be the random variables that are their responses.
Let y,=min{x,, xi, .., X, } be the lowest of the first k responses, together
with x,.

At the kth stage, the buyer chooses between producing the good himself
at cost zy; buying the good from seller i, i=1, .., k; or continuing to ask
further potential sellers. Given xg, X, .., X, _;, denote by y2, yi, i=1, .., k,
and o, the set of kth responses to x; in which he makes these respective
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decisions. Thus, if x; €7(Xq, X1, - Xx_1), the buyer decides after the kth
stage to produce the good himself; if x; € yi(xo, X;, ..., Xx 1), he purchases
it from seller 7; and if x, € o,(xo, X;, ..., Xx_1), he takes his (k+ 1)th obser-
vation. Let

= {(X15 s X ) | X € V(X5 or X 1) 5 i=0,..,k, 4
and
B2) = {(X 15 s Xy 15 Xip 1 woer Xp) | (15 oy Xi 15 Z5 X115 o X)) el},
i=0,1, ..k (5)

Thus I is the set of others’ responses such that bidder i wins in round £ if
he reports x,; fi(z) is the set of others’ responses such that i wins in the kth
round if he reports z. The arguments of «, and y; will be suppressed for
brevity.

It follows that, if a seller reports a cost of z, his probability of winning
the contract is

x w

tANvH M M ~, \»Axiv&klt Amv
k=1i=1"Bl2)

Where X ;= (X, vy X; 2 1 X115 o Xg) and fo(x ) =TT5_ 1 2. f(X)):

It follows from Lemma 2 that there is a function A4(x) that represents
the amount 7 is paid, given that he is asked to supply the good in the kth
round. Assume that i is paid if and only if he is asked to supply the good:
this is without loss of generality because of risk neutrality. Denote by p(z) a
sellers’ average payment given that he is asked to supply the good and that
his reported cost is z; p(z) satisfies

WP =Y T [ e ) e ) (7)
k=1i=1"B)
If a seller’s true cost is x and he reports z, his expected profit is
n(z) = p(z)[ p(z) — x]. (8)
The incentive-compatibility constraint requires that n(z) is maximized at

z=x. This requires

w. [p(2) u(z)] ‘ =xp'(2)] = x ®)
Z

z=X

or

- %«3 zu'(z) dz

X

p(x) u(x)

xpu(x) + % " u(z) de, (10)

X
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where x,, is defined by p(x,,) u(x,,) =0. Since p(x) = x for u(x) >0 by the
assumption of free exit, x,, satisfies x,, =inf{x|pu(x)=0}. In addition, the

second-order condition requires u'(x) <0, which is assumed to hold, and
will hold in the solution.

LeMMA 3. The expected payment to the successful bidder is

=3 M; J(x;) f(x) dx. (11)

k=1i=1

T= Mx,\ W % I(x)f(x)dx  (by definition of 4})

SN N [ Ve P O
k=1i=1"0 Bi(2)
w n k

= X[ Al Do) s de
0 k=1i= F«ANv

- bs @) u2)f(z)dz  (from (7))

=" pe) e (2

- % " 2£(2) w(z) dz + F(x) % ) dx| -+ % "Rz u(z)dz (from 10))
0 z 0 0

= ﬁo J(2) f(z) w(z)dz  (from (1))

I

[“rerse 3 S [ fix)dv dz (rom (6)

k=1i=1"B(z)

-3 [T T s b
k=1i= 0 P%Nv
n k
= % X[ T i) flx ) de
n k
=Y X [ IS dx QED.
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Define some more notation: let

. J(x) fx,) dx (12)

i=0 YrE(x05 X15 s Xk—1)

G =h(Xo, X5y X 1)

+] S50 B a(xo, X1 o 2 dvs (13)
(X0, X1 oy Xk—1)

Gn=hy (14)

The interpretation of these variables is as follows. Suppose the buyer has
observed x,, ..., x,_ ;. His expected cost if he takes exactly one more obser-
vation is &, since, when he accepts a type x;, he pays him of average J(x,),
as implied by Lemmas 1 and 3. His total expected cost given that he does
not stop at the (k — 1)th observation is ¢, because he pays h, if he stops at
the kth observation and pays ¢, ., if he continues beyond the kth obser-
vation. Hence ¢, is the buyer’s total expected cost associated with taking
the kth observation.

LEMMA 4. The total expected cost incurred by the buyer is, for
1<k<n—1:

p="h ls J(x1) T%& Ls?@%

%k

+T £ brcs1(X0r X1 o H»EL.; dx,. (1)

Proof. From (11)

suM_ T&iﬁ Swdr Y[ E?IE\QEL

i=1"Tk

- S [3] vkl |
k=1Li=0"T%

HIM [ T

=1"% Xk—1 j=1

k
e A dser 3 [ S Sl drifdeeyods, (by (4)

%k i=0 "V

it [ S e+ ] s

« ﬁ T e ) (x_) %T@ ...Tf (by (12))

%n—1
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ay

% : F o 2) b sl o s-mv?-%..?_. (16)

%p—2
Equation (15) is obtained by backward induction. Q.ED.

Clearly, the cost to the buyer of searching further, ¢,, depends on the
reported costs X, Xy, ..., X, _;. However, we now show it depends only on
the minimum of these, y, _; =min{x,, X, ..., X;_ }.

LEMMA 5. Minimizing the total expected cost incurred by the buyer, ¢,
implies that the cost of continuing, ¢, depends only on the lowest previously
observed cost, y,. _,.

Proof.  Recall that J is assumed to be increasing. The proof is by induc-
tion. For the base, note that, from the last line of the proof of Lemma 4
and (13), minimizing ¢ requires minimizing ¢, = h,.. By (12), this occurs by
putting x, in y, when J(x,) is smallest, which occurs at x,=y, , if
Xy 2 Yn_1, 0r X;=x, if x,<y,_,. Thus

b=y =ct W [ a6 fe) e+ [

0 Yn—

S(Yn—1) f(x,) dx,

- QLO;L J(6) S (%) dox + [1 = F(p, )1 I(Po_y)- (17)

This proves the base of the induction. From (15), we must minimize ¢,
over &, yi. Suppose ¢ ; depends only on y,=min{y,_,, x;}.

k
de=c+ Y [ J0x) f0n) dret | f60) diya(i) de, (by (12), (13))

i=0 "k

—c+t ﬁi min{J(x,), i1 1(x)} f(xi) dxy

+ 7 min{I(0e), dusi(ve 1)} Sxe) dxg

Yk—1

= ?%osi min{J(x), ., 1(x)} f(x) dx+ [1 = F(y,_,)]

XEEA.\A\ST; &»tc\»l&. (18)

Since this depends only on y,_,, the proof is complete. Q.E.D.
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COROLLARY 6. The set of reports for which, at the kth stage, the buyer
decides to continue searching, is

(Y1) = {x|z=min{y,_,, x} = ¢y 4 1(2) <J(2) . (19)
Define
Yi(y)=0i(y)—J(p). (20)

Thus ,(y) is the difference between the expected cost to the buyer, at
stage k — 1, of searching further and the cost of purchasing at the current
best observation.

LEMMA 7. Y, (p) is strictly decreasing in y.

Proof. As the base of the induction, note that ,= —J'<0 by
assumption. From (20) and the last line of the proof of Lemma 5,

V() =+ | min{0, Y ()} /06) dx

4 [ 00 fx) dxe = F(3) J(0) + (1= F(p) I min {0, (0}

0
ey b [J(x) = J(»)] f(x) dx+ h min{0, ¥y, 1(x)} £(x) dx

+ [1—F(y)] min{0, ¥, (¥)}

uqlﬂ%+ J, min{0. vy (0} 1) i

+[1=F(») 1 min{0, Y, 1(»)}; (21)

the last line following because

ﬁ J(x) f(x) dx = xF(x)

[ Ry dxt [ Py dx=yRp) by (1)
o Jo 0
(22)

so that

[ 00— 100 s dv=yp) - 3+ 724 | )

_—F)” o)

f(y)
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It follows from the last line of (21) that

Vi= —TF(y)+ :%@Jwaip Vo)) <0 (24)

Q.ED.

Define xf by . (xF¥)=0. Since W, (y) is strictly decreasing for
0 < F(y)<1, there is at most one interior solution of Y, ;(x¥)=0. From
Corollary 6, xj acts like a reservation price (or, more accurately, a reser-
vation type), since the buyer continues to search if and only if y, > x}.

Lemma 8. xf=x¥f=..-=x}

n—1-

Proof.  Suppose, by way of induction, xF =x},,= --- =x¥_,, for some
k<n—1. This is true for k=n—1. From (21)

[F(xF)]?
S(xE)

+ [ min{0, v (0} S0 de

[ LRGP,
IT flx*_) ;+b min{0, Y, 1(x)} f(x) dx

=0, (25)

VilxE)=c— + [1 = FxF)] min {0, ¢, 1 (x7) }

since the first term in brackets is ¥ ,(x¥_;)=0 and x <x¥ =y, (x)=>
Ve (xF)=0.Thus x}_, =x}. Q.E.D.

Define x* by

_[F))
fo%)

From the proof of Lemma 8, x* is the constant cut-off reported cost which
determines whether or not the buyer continues searching. For some
intuitive understanding of why this cut-off is determined by (26), recall
from Lemma 1 that a seller with cost x* makes a profit equal to the dif-
ference on average between his own cost and the cost of the second-lowest
bidder, or F(x*)/f(x*). Suppose the lowest-cost bidder the buyer has so far
observed has cost of x*. If the buyer stops searching now and buys from
this bidder, the price he pays is x* + F(x*)/f(x*). If instead he takes one
more observation and finds a lower-cost seller, he must pay the new bidder
a price equal to the cost of the second-lowest-cost bidder, which is now x*.
Thus, if he searches once more and finds a lower-cost seller, he saves

¢ (26)



114 MC AFEE AND MC MILLAN

F(x*)/f(x*) on average. The probablity of finding a lower-cost seller with
the next observation is F(x*). Hence the marginal expected benefit to one
more observation is [F(x*)]%/f(x*). The marginal cost is ¢. Hence (26)
simply equates marginal benefit to marginal cost.

The optimal mechanism can now be summarized.

THEOREM 9. The optimal strategy for the buyer is:

(a) If xo=J"'(zo) < x*, the buyer consults no potential sellers, and
produces the good himself.

(b) If xo> x* and F(x*) =1, the buyer takes one observation and pays
Xmax = Inf{x | F(x)=1}.

(¢) If xo>x* and F(x*) <1, the buyer sequentially samples the sellers
until the first with a cost no greater than x* is found; if he finds no such
seller, he samples all of the sellers and either buys from the lowest-cost seller
or produces the good himself if the lowest-cost seller’s cost exceeds x,. The
payment to a seller with cost y is then

x0
yHI=F)1 0 [T [1—Fx))~tdx,  y>x*
p(y)= , ‘ 27)
X*L;:nw@:i? y<xt.
On average, the total cost to the buyer is

c
F(x*)

suTQ*: ;El:|2x*:d+.~§&:|Exo:=

7] v 58 |- o 8

— nF(x¥) % [1—F(x)]" ' dx. (28)

X

Proof. Equations (27) and (28) follow from the fact that, given that the
cut-off type is defined by (26), the probability of a seller with cost x
winning the contract is

1, x < x*
wx)={ [1—Fx)]""}, x*<x<x, (29)

0, x> X,
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Equation (10) implies

px)=x+—— @v ds,

Qv
which yields (27).

With probability (1 — F(x*))/~'F(x*), the buyer will contact j firms,
while with probability (1 — F(x*))", he contacts all n firms. It follows that

p=3 (p(x*)+je)(1 — F(x*))~ ' F(x*)
1

+ (1 —=F(x*))"nc+ (1 — F(x,))"zq
[ ply) (= F)= Y (5) dy

= p(x*)[1—(1-F(x*))"]

[1—(n+1)(1—F(x*))"+n(1—F(x*))"*']

Ex*v
+ (1 —F(x*))'nc+ (1 — F(xg))"z

+) \§: —F())"~'f(y)dy

ixu: P (1= Fx)) =t dx f() dy

=p(x*)[1 - (1—-F(x*))"]

Ex*v [1-(1—=Fx*)"[n+1—n(1 —F(x*))—nF(x*)]]

+ 2o(1 = F(xo))" +) §C —F(y)"~f(y)dy

+nF(y) f?m@:i%

[T RO (- FU) @,

X

which implies (28) Q.E.D.

Just as the optimal direct incentive-compatible auction in the usual case
of costless communication can be implemented as a sealed-bid or oral auc-
tion, so the optimal direct sequential incentive-compatible mechanism has
its nondirect counterpart. The buyer in sequence invites potential sellers to
submit price quotations. Bidder i, with production cost x;, rationally bids
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p(x,). The buyer either awards the contract to the first bidder who bids less
than p(x*), or produces the item himself if no bid is less than J(x,). Note
that, analogous with the usual equivalence between sealed-bid and oral
auctions in the case of risk-neutral bidders, in the sequential auction the
buyer is indifferent between receiving bids openly or in secret; in particular,
the buyer gains nothing on average by informing a bidder about the best
previous bid. The fact that the buyer rejects all bids and produces the good
himself if the lowest bidder’s production cost exceeds x, means that, as in
the usual auction model, the buyer sets a reserve cost x, which is strictly
less than his own production cost z, (since zo = J(Xo) > X,), so that there is
some probability of an inefficient outcome, with the buyer producing the
item himself even though he has found a firm with a lower production
cost.'°

Implementing the optimal mechanism by a sequence of price quotations
makes complete the search-theoretic interpretation. The cut-off production
cost x* defined by (26) implies a reservation-price rule. Let G represent the
cumulative distribution of offered prices in the usual search formulation.
Then with ¢ as the unit search cost, the reservation price r is defined in the
usual search model by'!

e=["r-p)G(p)dr=| Glp)dp. (30)
0 0

(This simply equates the marginal cost of taking one more observation
with the marginal expected gain.) In the present model, the distribution of
offered prices is G(p) = F(J~*(p)), from Lemma 1.

THEOREM 10. The reservation price r satisfies

r=J(x*). (31)

10 Since part (a) of Theorem 9 implies that the reserve price is the same for all potential
sellers, the buyer is indifferent about whether or not the potential sellers know the order in
which they are being approached. (Compare with the standard auction, in which the reserve
price is independent of the number of bidders: Myerson [15], Riley and Samuelson [18].)
However, the payment function varies. Equation (27) assumes the sellers do not know where
they are in the order; if they did know this, payments would be the same on average, but the
payment function would be different from (27).

11 Note the distinction between the concepts of “reserve cost” (from auction theory) and
“reservation price” (from search theory), which is about to be defined. On reserve prices, see
McAfee and McMillan [11], Milgrom and Weber [12], Myerson [15], and Riley and
Samuelson [18]. On reservation prices, see Lippman and McCall [87] and Rothschild [20].
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Proof. Noting, by (26) and (30),

" -1 _[FMT?
J, PO o) dp=e= =75 (32)
we see that (31) is equivalent to
I [F(x)]?
dp==——"= 3
S F(J~(p))dp 700 (33)
This holds since
Iy _[F0)T?
. F(J(p)) dp o)
[ , [F(x)]?
= [ Fo a2
_ T _[Fx)T?
:Eihso bkéhé&ywmﬂl
=xF(x) = [ 3f () + F(») dy
=xP(0) =y + [ F) dy— [ Fo)dy
=0. (34)
QED.

The number of potential sellers, n, was assumed to be finite. However,
taking limits, the buyer’s expected total cost ¢ approaches the reservation
price as the number of potential sellers becomes large. To see this, note
from (28) that as n— oo,

+ c |x*+3x*vl
F(x*) fx*)

Also, from (27), the expected payment received by the successful bidder,
p(y), approaches x* as n— oo. This result was obtained by Riley and
Zeckhauser [19].12

¢ - x*

J(x*)=r. (35)

21n the context of the standard search model, a result analogous to this result (that, with
perfect recall, the reservation price for search over a finite set of prices is the same as for
search over an infinite set) was obtained by Landsberger and Peled [7] and Lippman and
McCall [8].
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Neither of the cut-off levels x, and x* depends upon the amount of
competition, n. Also, if z,= co, so that the buyer does not have the option
of in-house production, x,= oo, which implies that no bidder is ever
immediately rejected: all bidders have a change of winning the final auction
in the event of no bidder having a cost less than x* The assumed
monotonicity of the function J(x) implies that [F(x)]1?/f(x) is monotonic
increasing in x. Hence, from (26), the higher the search cost c, the higher
the cut-off production cost x*.

5. CONCLUSION

To summarize: whereas the monopsonist’s optimal mechanism in the
absence of communication costs is an oral or sealed-bid auction, when
there are communication costs the optimal mechanism consists of reser-
vation-price search followed, if the set of potential sellers is exhausted, by
an auction. With an infinite set of potential sellers, the optimal mechanism
is pure sequential search."?

The use of sequential mechanisms may, however, be undesirable when
time matters and communication takes time. In this case, the buyer might
wish to send signals to several potential sellers simultaneously, in order to
reach a decision in less time. Our model generalizes to this case in a
straightforward manner, with the caveat that a sequential mechanism may
involve communications with several sellers simultaneously. Lemma 2 is
consistent with this generalization. It may be possible to show, using a
method analogous to our construction, that the search strategy of
Morgan [13] and Morgan and Manning [14], involving samples of
several observations, is optimal in the class of all mechanisms.

APPENDIX

We now give some more details of the extension of the Revelation
Principle to the case of costly communication, and prove Lemma 2.

A principal-initiated, principal-centered mechanism allows an exchange
of signals between the principal and some or all of the agents and, when

131n a complementary paper, Samuelson [21] analyzed an auction in which each bidder
incurs a cost in submitting a bid. In the monopsonist’s optimal auction, the buyer sets a
reserve cost, which varies with the number of bidders. Such an extension is straightforward to
implement in this model, since the effect is only to make the expected profit of the highest cost
firm with a positive probability of winning equal to the cost of bidding. This means u(x,,) will
no longer be zero in Eq. (10).
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this exchange of information has ended, culminates in a vector of decisions
(dy, dy5 ..., dy) € D.

Since communication is costly for the principal, there will be some
agents with whom the principal will not want to communicate at any stage.
It is notationally useful to introduce a nonsignal, 45 &4 s interpreted as
meaning no signal was sent.

The kth stage of a mechanism occurs in two parts. First, the principal
sends signals &, = ({;)/_, to the n agents. (Many of these may be ,.)
Denote the principal’s earlier signals by ,_;&= ()52 and his earlier
signals to agent 7 in particular by ,_ ;& = (£)¥Z' and his earlier signals to
agent i in particular by ,_; & = (¢)*Z'. The principal, having sent ¢, to the
agents, then receives from signals #, = (1, .., 7). Let ;0= (n,)¢=} and
k—1h'= )k The signals &} and 7} are members of some signal spaces
given by the mechanism (note that &, is a member of both signal spaces).

When the principal chooses his kth-round signals &,, he has previously
chosen ,_,¢ and observed ,_,n, and so he can condition his choice
of £, on these. To describe the choice of signal by the principal, let
Wi, k—1& 1_1m) be a probability distribution describing the choice of
-

Any agent’s response #}, to the signal he receives, ¢i, can be conditioned
on ¢ and ,_,n' as well as the particular agent’s type ¢, Let
oi(ni, &, k_1n 1;) be the probability distribution governing the
generation of the agent’s reply #:.

The fact that communication is principal-initiated means that ¢% must
satisfy two requirements. First, a signal £, must be answered by ¢, as &,
means that no signal was sent by the principal to this agent. This implies
that ¢ must satisfy:

Al
0, otherwise. (A1)

ok (s (-1 &, &gy kat’s ?vﬂﬁ

MQOOM»QV H—QH k+1 m,..” Amwu "y m\ﬂ. N&» \~H+ RN Nw«v and \a&\“ AQM» ] Q\ﬁ
C4>Myy1s - Ni_y) for some j<k. Then

o.“a+ HA:MX \«....Hm.«.“ \«&w F.v = QNTN\OV \«mw k— H:w va *.OH any :m T?Nv

This is because ,,,& and .4’ differ from ¢ and , 5’ only by the
addition of a nonsignal which, not being received, cannot affect the out-
come of any future stage. Conditions (A1) and (A2) embody the fact that
¢4 is merely a record-keeping device, and not a true signal.

Without loss of generality, the outcome &, from the distribution y, is
used to denote the end of the communication process, where ¢, is the vec-
tor of nonsignals. Since it is possible that this point is reached before all of
the agents have been communicated with, there must be some way of infor-
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ming those agents who were not contacted that the process has ended.
Introduce another fictitious signal e, which the principal can, without cost,
send to the agents he did not communicate with to tell them that the
communication is finished.

Upon communication finishing at the kth stage, the principal chooses a
decision d, according to the probability distribution po(do, (& £1), while
each agent chooses his decision d, given by the probability distribution
oi(d,, & «n's t;). The distribution ¢ must satisfy two conditions. First,
since (as already noted) it must not be possible for the principal to use the
mechanism so as to avoid incurring communication costs, there must be
some exogenous decision d;(z;) which agent i takes if he has never been
communicated with; that is,

1 if d;= MNQL

0, otherwise. (A3)

QM.VA&U AN%V it mﬁu mvu Amﬁu (it MQVQ NL ”%

Second, the addition of a nonsignal to the signals received by i must not
change s decision; that is, defining ., ;¢  and ,n' as before,

Q.MVA&T \a+wm~.“ \«3\;.“ va“QmA&? wmﬂ wlp:mu NN.Vw mOH. any &T A}L‘v

Equations (A3) and (A4) are analogous to (Al) and (A2). (Conditions
(A1), (A2), (A3), and (A4) together can be taken to be a formal definition
of principal-initiated communication.)

Let ¢'=(01),; o' is a strategy for agent i. A message for agent i is
m,= (&, ,n'); denote M, the set of messages. Formally, a mechanism
consists of the signal spaces and the probability distribution p= (1;);2,.

Any mechanism, when combined with a vector of strategies
o=(c", .., a"), produces a distribution of outcomes {(d|1, a). To solve for
the distribution of outcomes, one generates the distribution of messages at
the first stage, using u; and o,. This is then used as an input into the
second stage, using u, and g,; and so on. This gives rise to a distribution of
messages, which is then used in conjunction with u, and ¢, to produce a
distribution of decision de D.

Agent 7's expected utility is

V(o)= b ﬁ Ut d) ¢((d|1, o) P(t) dt dd. (A5)

Consider a strategy vector . Let 6 ™' = (¢, .., '}, &, o', ., ¢"). Then
o is a Bayes—Nash equilibrium for the principal-initiated mechanism p if
and only if, for all &' satisfying (A1), (A2), (A3), and (A4),

Vio)= V{6, foralli=1, .., n. (A6)
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The inability of an agent to communicate without prompting in a
principal-initiated mechanism causes us to introduce yet another fictitious
signal £,. The principal, by sending &, to agent i, opens the communication
and is the cue for the agent to respond with his type.

Formally, a mechanism is a direct sequential mechanism if the set of
messages M, contains only elements of the type (A7) or (A8). (Here it is
supposed that the principal chooses to cease communication after the kth
stage; and in (A7), the (&,, ;) element occurs at the jth component; that is,
the jth stage of the sequential process):

$s &4
£ &

WChen)=1 & & | = (A7)
& &y
l&_ N.&l
e 6]

(«€ k') = 0 & : (A8)
|m N&'

With the message (A7), the principal communicates with agent i at the jth
stage, asking and being told 7’s type. The principal then, at the kth and last
stage, signals to i that the communication is over by suggesting the
decision d; for agent i. With the message (A8), the principal never com-
municates with i except at the end to inform the agent, without incurring
any cost of communication, that the process is ended.

An agent is honest if

olt;, &, 1)=1  forally,. (A9)

Equation (A9) implies, using (A2), that agent i correctly reports his type
when asked (that is, upon receiving the message &, as in (A7)). An agent is
obedient if, with y; given by (A7),

oo(dy, v, 1) =1 for all ¢;; (A10)

that is, the agent takes the decision recommended by the principal.

Let we R represent an ordered set of agents communicated with. On
occasion, in a loose but not misleading use of notation, we shall refer to
agent i€ w, meaning that @ = (i, .., {;_ 1, & ;4 1, s Ig)-
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Proof of Lemma 2. The proof begins by constructing u* from p, o. It is
then demonstrated that u* is incentive compatible. It will be clear from the
construction that, for any ¢, the distribution of decisions and agents com-
municated with is unchanged. The construction is by induction. Denote by
v, the set of agents communicated with in the direct sequential mechanism
u* by the end of the kth stage.

The base of the induction requires

twwﬁmﬁv ooy m$° mov m&u ey m$v” M \:Amﬁg s Nso Mv m&w ooy N&v A}MHV

3

Let v, be the empty tuple. This provides the base of the induction.
Now suppose (, ;& «_ 1), an internal vector to u*, has been given. The
following steps represent the internal workings of the mechanism.

1. Choose &, from the distribution u(&, 1 & ko 1n)- I & =¢,, 8O
to 4. If there is no i,ew with &%= (,_,&,, &k) and Ef#E,, go to 3.
Otherwise proceed to 2.

2. To be here, there must be an agent i, receiving his first signal.
Send i, the signal &,. Let v, = (vi_, ix). i, responds with this type ;. Go
to 3.

3. Since ¢; is known for all types who have been sent any message
other than ¢,, we may operate o} on (&', ,_;n') and generate a signal,
internal to the mechanism, x%, which is added to ,_,#’ to produce ,n". For
other i¢ vy, (&'=¢,, so set nj =&, Return to 1.

4. The last value of &, was ,&,. For all ie v, draw a decision d, from
the distribution ai(d;, &', xn’, t;). Send this decision d; to 7, and send ¢ to
all other agents. Draw a decision d, from the distribution uo(dy , &, ).

Note that the resulting mechanism u* is direct and sequential. By
construction, v, = . Since the same distributions are used, the same dis-
tribution of outcomes occurs for each ¢ e T, provided the agents are honest
and obedient. Finally, to see that this mechanism is incentive compatible,
suppose that at state j agent i responds with type ¢; when his true type is ¢,.
Then, in the original mechanism, the ¢} arising from type 7; must dominate
the ¢! arising from the type ¢, Thus, o' was suboptimal, contrary to
hypothesis. Similarly, if the agent does not choose d; as suggested by the
principal, there must be a preferred decision d;, contrary to the hypothesis
that o) was optimal. Q.ED.

If it is desirable to include real time and discounting in the model, the
definition of sequential mechanisms must be modified to allow asking
several agents their type simultaneously. The only modification necessary
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to the proof is allowing the principal to let real time pass in the
computation of g, in step 3, so that u* involves the same timing as p.

Note that this proof is essentially the same as the proof of the usual
Revelation Principle (Myerson [16]), except that the fact that com-
munication is costly means that care must be taken over the timing of
messages: in particular, the proof must keep track of exactly which agents
have been communicated with, and which have not, at any stage. This is
why the ficitious signals &, &,, and ¢ are needed.
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