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ABSTRACT. For a compact metric space X , consider a linear subspace 4 of
C(X). containing the constant functions. One version of the Stone-Weierstrass
Theorem states that, if A separates points, then the closure of 4 under both
minima and maxima is dense in C(X). By the Hahn-Banach Theorem, if
A separates probability measures, A is dense in C(X). It is shown that if
A separates points from probability measures, then the closure of 4 under
minima is dense in C(X) . This theorem has applications in economic theory.

The classical Stone-Weierstrass Theorem states that, if a linear space 4 of
real valued functions defined on a compact metric space X contains the con-
stant functions, is closed under minima and maxima, and separates points, then
A is dense in C(X). The purpose of this paper is to provide an alternative
structure for sets closed under minima alone, which generates the same result.

The theorem fits between-the Stone-Weierstrass Theorem and a corollary to
the Hahn-Banach Theorem. Let X be a compact metric space, with metric p,
and A the set of probability measures (regular unitary measures) on X . Let
J, represent the point mass measures:

1, ifxekFE,

9x(E) = { 0, ifx¢E.

For 4 C C(X), define the closure under minima and maxima:

A = {f:f<x>= min fi(x), fi€ 4, neN},

1<i<n

Ay

{f:f(x)= max fi(x), fied, neN}.

1<i<n

As usual, 1 denotes the constant function one, and A the closure of A4 in
supnorm.

Definition 1. A linear subspace of C(X) containing 1 is said to separate points
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if, for x and y in X,
(1) /fd6 :/fdéy for all fin 4 implies x=1y,
and to separate probability measures if, for u, v € A,
/fduz/fdu for all fin 4 implies u=v,
and to separate points from probability measures if, for 4 in A, x € X,

2) /fduz/fdéx for all fin A implies 4 = 0.

One statement of the Stone-Weierstrass Theorem is

Theorem 2 (Stone-Weierstrass). If A is a linear subspace of C(X), 1€ A, then

A separates points if and only if (Am)y = C(X).

Condition (1) is equivalent to the more standard definition of separating
points, namely that f(x) = f(y) forall f € 4 implies x =y, and is stated in
the somewhat cumbersome manner above for comparability to two subsequent
results. Note that (A,)a is a linear space closed under maxima and minima.

A well-known corollary! to the Hahn-Banach Theorem and Riesz Represen-
tation Theorem has a similar flavor to Theorem 2.

Theorem 3 (Corollary to Hahn-Banach). If 4 is a linear subspace of C(X),
1€ A, then A separates probability measures if and only if A = C(X).

Thus, one consolidated view of these results is that we are given 4 C C(X),
with 1 € 4, then A4 is dense if it separates probability measures from probabil-
ity measures, or if it is closed under minima and maxima and separates points.
In the next section, we prove the following intermediate result.

Theorem 4. If A is a linear subspace of CX), 1€4, then A separates points
from probability measures if and only if A, = Ay = C(X).

This demonstrates that separating points from probability measures substi-
tutes for the ability to take maxima in the Stone-Weierstrass Theorem.
Consider for example, the set of quadratics on [0, 1]:

A= {ao + o1 X + a2x2: (g, 1, ay) € R3}.
Clearly 4 = A # C[0, 1]. However, A separates points from probability
measures. Thai is if 4 €A, u #d,, then

[ =wrda e =0< [x-p?duto).

Therefore, according to Theorem 4, A4,, = Ay = C[0, 1]. Thus, the present
theorem is not a consequence of the Hahn-Banach Corollary. Similarly, if 4 is
the set of linear functions on [0, 1],

A= {a0+a1x: (ag, ap) € Rz}

ISee, for example, Friedman [3, Corollary 4.8.7, p. 153], and note that the norm dual of C(X)
is the set of regular signed measures. Since 1 € A, [ f(du* —du~) =0 allows u*, u~ € A
without loss of generality, where u = u* — u~ is the Jordan decomposition of 4.
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Since A separates points, (A,,)y = C[0, 1]. Incidentally, (A,,)s is the sub-
space of all piecewise linear functions on [0, 1]. However, A4 fails to separate
points from probability measures, and 4,, is only the set of convex functions.
This example distinguishes the present theorem from the Stone-Weierstrass the-
orem.

Problems for which only minima or maxima, but not both, may be taken
arise in a natural way in economic theory. Suppose the value v of an object
for sale (e.g., an oil lease) is correlated to an observable s (for example, the
results of a sample drilling). Let f(s/v) be the density of s, given v . Suppose
the potential buyer, but not the seller, knows v . Can the seller on average
charge the potential buyer his value v ? This reduces to solving the equation

v=Lzmﬂwmm,

where z(s) is the price charged when the outcome s arises. Assume s is a
draw from a compact metric space S .

If the seller offers the buyer a set {z1, ..., z,} of price functions, and lets
the buyer choose the one he likes best (i.e., which minimizes the expected price)
the seller will learn, on average,

pw)= min [ z(5)(s/v) ds.
1<i<n Jg

This requires that p(v) be no greater than the buyer’s value, v, so that the
buyer is willing to participate in this scheme.

R = {/Z(s)f(s/-)a’s: z € C(S)} )

then the seller can charge the buyer his value (on average) precisely when the
identity is in R, . Obviously, the seller can get arbitrarily close if R,, =
C[0, 7], where the value falls in [0, 7]. Note that 1 € R since f(-/v) is
a density. This problem, and others like it, are explored in [4, 5]. We shall
return to a special case of this class of problems in the final section.

PROOF OF THEOREM 4

For this section, X is a compact metric space with metric p, A is alinear
subspace of C(X),and 1€ 4.

Definition 5. Let ¢ > 0, 6 > 0. A positive continuous function f is a nearly
u-shaped function at y of order (¢, d) if (i) f(y) < & and (i) p(x,y) >0
implies f(x) > 1. .

Let U(y, e, d) denote the set of nearly u-shaped functions at y of order

(¢, ) . We shall make use of three obvious properties of the sets U (y,e,0).
(3) 0<e<e, 0<d<d=>Uy,e,0) CU®y, e, &),

(4) each U(y, €, d) is convex,

(5) each U(y, ¢, J) has nonempty interior.

The last fact follows from the observation that the & /4 ball around ¢/2 +
p(-, ¥)/d is contained in U(y, ¢, 6). The following lemma shows that Ay =
C(X) if and only if A4 contains nearly u-shaped functions at every x € X of
all orders (e, d). This lemma is critical to the proof of the theorem.
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Lemma 6. Suppose A C C(X) is a linear subspace, 1 € A. Then A, = C(X)
if and only if for all yin X andall ¢, 6 >0, U(y,e,0)NA# .

Proof. (:>) Fix ye X, ¢> 0, and o > 0. Since Z,;: C(X),there are
fis ..oy fn € A so that

min fi(x) — (¢/2+ p(x,y)/d)| <e/2, VxeLX.

1<i<n

Thus, there exists j € {1,...,n} with |fj(y) —¢&/2| < ¢/2. From fj(x) >
min;<;<, fi(x) > p(x, y)/6, we easily infer fieUy,e,d).
(«) Fix feC(X) and ¢ > 0. Define

o= r;}ea;f(m — min f(x).

If @ =0, we are done, since 1 € 4. So suppose a > 0. Since f is continuous
and X compact, thereisa f > 0 so that
p(x,y)<B=fy) - flx)] <e/2.
For each y € X, choose g € ANU(y, ¢/3a, B), and define
h=ag+(f(y)+¢/2)1€ A.
Note
() = W) =ag(y) +&/2 < ale/3a) +&/2 <e.
For p(x,y)< B,
h(x)— f(x) = ag(x)+ f(y) = f(x) +&/22 f(y) = f(x) +&/220.
For p(x,y)> B, we have

h(x) = f(x) = ag(x) + f(y) = f(x) +&/2 2 a+ f(y) - f(x) +&/220,

by the definition of «.

Thus A(x) > f(x) and A(y) < f(y) +&. Now define the set (recall that A
depends on y):

S() = {x: h(x) < f(x) +¢}.

Clearly, {S(y):y € X} forms an open cover of X, since y € S(y). Because
X is compact, there is a finite subcover S(x;), ..., S(x,), with associated
functions Ay, ..., h,. By construction, 0 < minj<;<, hi(x) — f(x) < & for all
x € X, and thus f € 4,, as desired. Q.E.D.

Remark. The nearly u-shaped functions permit approximation from above, in

the sense that the lower envelope, produced by minima, approximates any func-

tion. This occurs because nearly u-shaped functions take minima near a chosen
" point y, and then rise sufficiently rapidly away from y.

Theorem 4. Suppose A is a linear subspace of C(X), where X is a compact
metric space, and 1 € A. Then A, = C(X) if and only if A separates points
from probability distributions.

Proof. (=) Suppose u € A, u # dy,. Then there exists § > 0 so that
fNJ(y) du(x) < 1, where Ns(y)={x:p(x,y)<d}. Let e <1~ fNé(y) du(x),
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and choose f € U(y, ¢, d)NA. Such a function exists by Lemma 6. Then

/fdy: fdu+/ fduZ/ fduz/ du
N5(») X\N5(») X\N;(7) X\N5(»)
=1—/ du>e> f(y),
N;s(y)

and so f € A and f separates oy from u, as desired.

(<) Suppose, by way of contradiction, that 4,, # C(X). By Lemma 6,
there exists y, g > 0, and dp > 0 so that U(y, ey, dy)NA4=2. Since A4 is
linear, and hence convex, and U(y, €y, dp) is convex, with nonempty interior,
there is a separating functional?> Thus, there is a nonzero signed measure 4,
and a constant ¢ satisfying

(6) forall ge Aandall fe U(y, g, dy), we have /gd,ugcg/fdu.

Since 4 is a linear space, [ gdu =0 forall g in A. Therefore, ¢ > 0.
Let u = u*—p~ be the Jordan Decomposition of u (see [6, pp. 235-236]),
with associated sets ST and S, which partition X , satisfying

S*NS~ =@ and u*(S”)=pu"(S*)=0.

Since 1€ 4, [dut=[du .

Thus both u* and u~ are finite, and we may then take u*, 4~ € A without
loss of generality, by rescaling. Neither u* nor u~ can be J,, for if either
is equal to J,, (2) and u # O contradicts (6). Since u~ is regular (see [1,
Theorem 1.1, p. 7]), there is a closed set ¥ C S~ and 0 < 6 < Jyp so that
YN Ns(y)=2 and 4~ (¥) >0. Choose K > 1/u~(¥) > 1, and define

0, ifxeN;(y),
f(x) = { K, ifxeV¥,
1, ifx¢YUN;©),

and observe, since ¥ N ST = &, that
7 /fdu=/fdu+—/fdu‘§1—1</ du= <0,
¥

By [1, Theorem 1.2, p. 83 there is a sequence {f,} C C(X) satisfying

(a) fu(x)>1 forall x ¢ Ns(xo);

(b) 0< fu(x) <K forall xe X;

(c) fa(y)=0; and

(d) fu(x)— f(x) forall xe X.
By (a)-(c), fu € U(y, &,d) C U(y, €0, do). By (b), (d), and (7), [ fudp —
J fdu < 0, which contradicts (6) and ¢ > 0. This completes the proof.
Q.E.D.

Remark. A,, may be replaced by Ay, in the statement of the theorem, by
noting Ay = —((—A)m) = —Am, since A is linear. In addition, if 4 is a

2See [2, Part I, Theorem 8, p. 417].
3This is a straightforward application of the Tietze Extension Theorem.



66 R. P. M®AFEE AND P. J. RENY

convex cone and both 1 and —1 arein 4, Lemma 6 and Theorem 4 continue
to hold, with trivial modifications of the proof.

CONCLUSION

When the metric space X is an interval [a, b] of the real line, the Stone-
Weierstrass Theorem has an appealing corollary, namely that if 1 and a strictly
increasing function are in A4, then (4,,)y = Cla, b]. There is an analogous
corollary for the present theorem.

Corollary 7. Suppose A is a linear subspace of Cla, b] containing 1 and two
functions f and g satisfying

(8) f is strictly increasing,

8(x)—gy)
®) S = 1)
Then A,, = Cla, b].
Proof. Observe that, if x <y < z, then

g(x) - &(y) _ &(z) — gy)
Jx)=f) =~ f(2)=F»)
Therefore, there is a function o (not necessarily continuous) so that
o X)) —80) . 8(x)— &)
AT =70 =V =8 10y

Moreover, a is strictly increasing, for if x <y < z,

g(y) — glx) < g(y) —g(z)
fO) = fx) ~ f) - f(2)

Consider Bx(y) = g(¥) — a(x)f(y), and note B, isin A4 and satisfies

Ba(y) = Bu(x) = (/) — F(x)) [% - a<x>] >0,

with equality if and only if y = x. Thus, if v # Jy,

is strictly increasing in x £y, forall y.*

a(x) <

< a(z).

b b
| B1ave) > [ puxav) = puto.
Consequently, (2) is satisfied. Q.E.D.

Remark. If f and g are twice differentiable, (8) and (9) reduce to f’ >0 and
(g'/f") > 0, which are easy to check, as we illustrate in the following example.

Example 7. Suppose a random variable s has cumulative distribution function
s¥ for s € [0, 1]. An economic agent who knows v is to be offered a menu
{z;} of payments. This agent chooses the charge with the least expected value:

1
_ : . v—1
p(v) = lrélilgn/o zi(s)vs¥ = ds.

4The function (g(x) — g(»))/(f(x) — f(»)) necessarily has left and right limits as x — y, if (9)
holds, fora <y < b.
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Is the set of such charges dense in CJ[0, 11? That is, if the agent’s value of

an object for sale is 7(v), is there a menu {zi(s)} that approximately charges
the agent his value?

The answer is yes. Consider

A={f: f(V):/lz(s)ys”_lds, z e Clo, 1]}
0

Note that 4 contains 1 (using z =1), f(v)=v/(v+1) (for z(s) = s)), and
gw)=v/(v+2) (for z(s) = sz_)_._It is easily verified that f and g satisfy the
hypotheses of the corollary, so 4,, = C[0, 1].
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