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OPTIMAL CONTRACTS FOR TEAMS*

By R. PrResToN MCAFEE AND JOHN McCMILLAN!

In a team subject to both adverse selection (each member’s ability is known
only to himself) and moral hazard (effort cannot be observed), optimal
contracts are, under certain conditions, linear in the team’s output. The
outcome is the same whether the principal observes just the total output or
each individual’s contribution. Thus monitoring is not needed to prevent
shirking by team members; instead, the role of monitoring is to discipline the
monitor.

1. INTRODUCTION AND SUMMARY

Production is a collective enterprise: by workers in a firm or firms in a joint
venture. The synergy that is the reason for the team’s existence may mean that an
individual’s contribution to the team’s output is not distinguishable, so that it is
impossible to pay him according to his own productivity. How should the principal
remunerate the team members so as to maximize his own profit? In this paper we
analyze incentives in teams with asymmetric information: both adverse selection
(each member’s ability is known only to himself) and moral hazard (effort cannot be
observed directly).

Holmstrom (1982) showed that, in a team model with moral hazard, the principal
can ensure an outcome arbitrarily close to the full-information ideal by using a
contract that punishes each team member arbitrarily severely whenever team
output falls below some target. However, this seems to be an unrealistically drastic
way of solving the moral-hazard problem.2 In our model, we in effect prevent the
principal from using such a contract by introducing adverse selection in addition to
moral hazard, and by assuming that ability and effort interact in such a way that the
principal is unable to disentangle an agent’s effort from his ability. Under the
assumption that the principal and the team members are risk neutral, we shall show
that the principal can implement his information-constrained optimum simply by
offering each agent a payment linear in the team’s output.

Although the essential feature of our analysis is the interaction between adverse
selection and moral hazard, this result can be understood by first considering the
special case in which the agents’ abilities are common knowledge. In this case the
moral-hazard problem can be completely solved: the principal can do as well as he

* Manuscript received December 1989.

! We thank Hideshi Itoh, Paul Milgrom, John Riley, and two referees for comments. McMillan thanks
the National Science Foundation (SES 872 1124) for research support.

2 Also, as Arrow (1985) pointed out, this solution suffers from a multiple-equilibrium problem. Many
combinations of agents’ actions are best responses to this contract: **If some individuals shirk a little, it
pays the others to work somewhat harder to achieve the same output. Hence the scheme does not enforce
the optimal outcome, though it permits it’’ (p. 47).
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could if he were in a full-information world and paying each agent his marginal
product. The principal offers to pay each of the n agents 100 percent of any marginal
increase in team output. Clearly this gives each agent the appropriate incentive to
exert effort. It does, however, result in the principal’s total variable payment being
n times the value of output. To balance this, the fixed part of the payment function
must be negative: in fact, in this case each agent’s fixed payment is set equal to the
expected value of output minus the agent’s production cost, so that the agents earn
zero rents on average. Thus the optimal contract has the principal initially (before
production takes place) collecting money from the agents, and then (after the
production process) paying each agent the full value of the team’s output.3 In other
words, in the presence of moral hazard, the principal achieves his ideal outcome
by, at the margin, breaking the budget: by eliminating the requirement that the
marginal payments sum to one, and by manipulating the lump-sum payments
instead of the marginal payments (as Groves 1973 first noted).

Now add adverse selection to the model. The privacy of the agents’ information
about their abilities results in their earning informational rents. The principal
extracts some (but not all) of these informational rents by reducing the marginal
payments below 100 percent: thus he distorts the outcome away from the first-best.
As the variable payments are reduced, the fixed payments become less negative;
that is, the agents’ initial payments are smaller. If the uncertainty about the agents’
abilities were sufficiently dispersed, the marginal payments would become so small
that they would sum to less than one, and the fixed payments would become
positive: this now looks like a more conventional payment scheme of salary plus
commissions (Theorem 2 in Section 2).

Why does the principal deliberately reduce the total gains from trade by paying
less than full marginal value product? The answer comes from the privacy of the
agents’ knowledge about their own abilities. There is a trade-off between the
adverse selection and the moral hazard. If the principal were to pay full marginal
value product to all agents, he would not be able to distinguish between high-ability
agents and low-ability agents. He would have to offer a sufficiently generous
contract to induce low-ability agents to participate; but this would leave high-ability
agents with large rents. By reducing marginal payments below 100 percent, and
offering different margins to different agents, the principal can sort the agents by
their ability. At the cost of lowering the total gains from trade, he reduces the rents
earned by more able agents. By appropriate choice of contracts to offer, the
principal can ensure that the extra rents he extracts from the able agents exceed the
reduction in total rents; the distortion from paying less than full marginal value
product is optimal from the principal’s point of view.4

The principal implements his information-constrained optimum by asking the
agents to reveal their abilities. The marginal rate of payment offered to any one
agent depends not only on his own reported ability but also on the reported ability
levels of all the other agents. Thus an agent is induced to exert more effort (a) the

3 Holmstrom (1982, p. 328) briefly discussed a contract of this sort for the case of no uncertainty.
4 For a more detailed account of the inefficiency arising from the trade-off between adverse selection
and moral hazard, see McAfee and McMillan (1987b, pp. 299-300).
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greater his own ability; and (b) the greater the ability of any of his team-mates. An
agent’s rents increase both with his own ability and with the other agents’ abilities.
By structuring the payment scheme in this way, the principal ensures that the
agents find it in their interest to report their abilities honestly (see Theorems 2 and
3 in Section 2). Thus the adverse selection leaves the agents earning positive rents.
The interdependencies among the agents’ payment functions mean that an agent
cares about his team-mates’ abilities. The more able are his team-mates, the harder
an agent will be induced to work; but this is more than compensated for by his
increased payments.

Unless the team-members’ abilities are potentially widely spread, the optimal
contract based on team output has the property that, at the margin, the principal
pays out more in bonus payments than the marginal value of output. (This is
because the principal wants to pay each individual close to his own marginal value
product.)

Suppose now that the principal can costlessly monitor the individuals’ contribu-
tions to team output. Our analysis yields the surprising result that the principal can
do no better when he monitors than when he simply bases payments on team output
as described (Theorem 4 in Section 3). This is most easily seen in the special case
in which adverse selection is absent: there, as we saw, the first-best outcome can
be attained using payments based on total output, and obviously monitoring cannot
improve upon this. Theorem 4 shows, less trivially, that the same result holds when
information about abilities is private. In other words, our model contradicts the
conventional wisdom that piece rates, where feasible, are inherently more effective
than group-payment schemes. In our model, an appropriately designed group
scheme will work as well as a piece-rate scheme.

Hence the jointness of production and the unobservability of individuals’
contributions need not create a free-rider problem. The principal can do as well
when he observes only total output as when he observes the individual contribu-
tions. Monitoring is not needed to prevent shirking by the team members. Thus our
results agree with Holmstrom (1982) in contradicting the assertions of Alchian and
Demsetz (1972) that ‘‘each input owner will have more incentive to shirk when he
works as part of a team, than if his performance could be monitored easily or if he
did not work as a team’’ and that the purpose of monitoring is ‘‘disciplining the
team”’ (p. 780).5

What then is the purpose of monitoring? Monitoring affects the principal’s
incentives. Paradoxically, the role of monitoring is to discipline the monitor. Recall
that the optimal contract based on team output often (but not always) has each team
member making an initial payment to the principal and then the principal paying the
agents a sum greater than the value of the output. With monitoring, and payments
based on individual contributions, the net payments are the same as without
monitoring, but the gross payments are smaller. We shall find that, with monitoring,
the principal pays ex post a sum less than the total value of output, and therefore
keeps part of the output for himself: the principal has a positive stake in the
outcome (Theorem 6 in Section 3). When the agents make ex ante payments to the

5 A similar result has been obtained independently by Picard and Rey (1987).
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principal and the contractual ex post payments sum to more than the value of
output, the principal is subject to moral hazard: it is in the principal’s interest to
renege on his contract by somehow sabotaging the production process.¢ The
principal is tempted to take the money and run. By the foregoing argument, such a
situation does not arise when there is monitoring, although it often does under
optimal contracts in the absence of monitoring. Our analysis assumes away any
possibility of the principal’s reneging by assuming that the principal is able to
commit himself to the terms of the contract. Suppose, however, we were to make
the commitment endogenous. A common way of achieving commitment is through
the reputational effects inherent in repeated plays of the game. The principal does
not renege because he knows that reneging will destroy his reputation and thereby
reduce his bargaining power for the future. (‘‘Reputation, i.e. credibility, is an
asset’’—Alchian and Demsetz 1972, p. 778.) The larger the immediate gains from
reneging, the less likely they are to be outweighed by the future losses. Thus
commitment is more credible the smaller the gains from reneging. It follows from
our analysis that the principal is more likely to maintain his commitment when he
monitors than when he does not. In this sense, the purpose of monitoring is to
discipline the monitor.”

2. OPTIMAL CONTRACTS BASED ON TEAM OUTPUT

The team consists of a principal and n agents. All are risk neutral. Each agent is
endowed with an ability level z;, i = 1, ... , n. Only agent i himself knows z;; the
other agents and the principal perceive z; to be drawn independently from a
distribution G(z;). Assume that the density g(z;)=G"'(z;) exists and is continuous.
Choose units for z such that the support of G is [0,1]. Note that we have ruled out
by assumption correlations among the agents’ abilities. Each agent chooses a level
of effort (possibly vector-valued) which is not directly observable by anyone else.
Output x, which is observed by the principal, depends upon the team members’
efforts and abilities, as well as a random variable. We leave implicit in the notation
both the efforts and the random shock. We suppose that agent i’s effort and ability
combine to produce his contribution to output measured in efficiency units, y;. The
monetary cost to the agent of this effort is c(y;, z;), with ¢, = 0, ¢, = 0,
¢, <0, and Cy; =0 (where subscripts denote partial derivatives). That is, both
cost and marginal cost decline as ability rises. (Thus z should be interpreted as an
ability specific to this production process, for with general abilities, opportunity-
cost considerations would tend to make ¢, positive.) Lety = (y, ... , y,) denote
the vector of agents’ contributions and suppose that the density of output x given
y can be written as f(x, y). This formulation embodies the assumption that the
principal, observing either output x or (as in the next section) individual contribu-
tions y;, is unable to disentangle effort from ability. Ability and effort affect output

6 As Eswaren and Kotwal (1984) pointed out, the principal also faces moral hazard in operating the
contract with group penalties of Holmstrom (1982).

7 Note that with monitoring, some commitment is still needed: the principal still has a short-run
incentive after production has taken place to fail to pay the agents as promised. But the point is that, with
monitoring, the temptation to renege is smaller and so the commitment is more likely to be maintained.
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jointly in the form of efficiency units. This assumption, which will be crucial to our
results, has been used before by Laffont and Tirole (1986, 1987) and McAfee and
McMillan (1987b).8

We confine attention to mechanisms in which the agents directly report their
types to the principal, since by the Revelation Principle (see Myerson 1982, for
example), any mechanism can be mimicked by such a direct mechanism. Let Z;
denote i’s report to the principal about his ability z;.

The principal commits himself in advance to the rule by which he will pay each
agent. Payment can be a function of what the principal observes, which is the final
output x and the reports Z; denote the payment to agent i by p;(x, Z). Note that the
payment to one individual can, and in the optimum contract will, depend on all the
others’ reports.

The principal’s payoff is the total value of the team’s output minus his payments
to the agents:

(1) ¢ =U(x,y,2)— 2 pilx, 2).

i=1

This formulation allows the possibility that the principal cares not only about the
aggregate output but also the individual inputs of effort and ability. For example,
the agents’ efforts or abilities may affect not only the quantity of the final output, x,
but also its quality; but it may be impossible to make payment contractually
dependent on quality. Also, the principal’s payoff may be nonlinear in output x: for
instance, the principal may be a monopolist in the product market, so that U(x) =
xD(x) where D(x) is the demand curve for the output.
The agent’s payoff is his payment less his cost of effort:

(2) Wi:p[(xa 2)_6'()’1', Zi)’ i=1""’n-

Denote by w(y) the expected value of x. Assume u; > 0 (where the subscript
denotes the partial derivative with respect to y;). Assume w;; > 0 for i # j; that is,
individuals’ contributions are complements in production.® Also, assume u is
concave in y, so that there are nonincreasing expected returns.

The following is some notational shorthand: let z_; = (2, «vv , Zj=1, Zi41s +ov »
Z,); and let
1 1
3) Ei«>=j-~j(-Hqu)wf;
0 0 J#i

8 The present model differs from that of Laffont and Tirole (1987) and McAfee and McMillan (1987b)
in two respects. In those papers, several agents compete for the contract but only one is hired; here, there
is no competition for contracts and the n agents work together in a team.

% In the case of no complementarity in production, & = /L, y;, the team problem breaks up into n
separate single-agent problems of the sort investigated by Laffont and Tirole (1986, 1987) and McAfee and
McMillan (1987b).
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) Ex('>=fw<°)f<x,y>dx;
0
(5) V(y, z) = E,U(x, y, 2).
Define
1- G(Zi)
(6) v(yi, z)) =c(yi, 2)) ————— ¢ (yi> 21).
9(z;)

y(y;, z;) will turn out to be the cost as perceived by the principal: the sum of
production cost (the first term on the right side (6)) and the cost of inducing the
agent to reveal his private information about his ability (the second term, recalling
that ¢, < 0).

Assume individual rationality: any of the agents can refuse to participate if the
contract offered by the principal gives him too little expected utility; that is,

(7) EXE#,"IT,'ZO.

We first characterize the best individual contribution to output by each agent that
the principal can evoke subject to the asymmetric-information constraints. Then we
exhibit a contract which succeeds in generating this individual contribution.

Define a rule relating individual contribution y; to abilities z by

(8) y*(z) = arg max V(y, z) — 2 (¥}, z;).
y j=1

We assume that the underlying functions U, ¢, and g are such that y*(z) is
continuously differentiable. This ensures that problems of the sort discussed by
Grossman and Hart (1983) do not arise.

The proofs of all of the following results are in the Appendix.

LEMMA 1. Suppose the payment functions p; satisfy
9) EE_jmi|;, =0=0

and evoke individual contributions y*(z), given z, where y*(z) is defined by (8). Then
the p;’s maximize the principal’s expected utility subject to individual rationality
and incentive compatibility.

Thus the principal seeks effort levels that maximize his expected utility less total
cost (production cost plus the principal’s information costs). The best feasible level
of effort, implicitly defined by (8), is too little (except for any agent with the highest
possible ability level, z; = 1). To see this, note that, in a full-information world, the
principal would maximize V(y, z) — Z/%; c(y;, z;). But, for z; < 1, y,(y;, z;) >
cy(¥i, z;); thus (8) results in too little effort. The asymmetric information distorts
the outcome. The principal perceives costs as being too high, as he faces not only
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production costs but also costs of inducing the agents to reveal their private
information. 10

The principal’s aim, then, is to find a contract that induces correct revelation of
the agents’ private information, z, and induces effort levels consistent with y*(z).
Note the multi-agent aspect of the contract-design problem: the incentive-compat-
ibility conditions must take account of the fact that one agent’s misrepresenting his
ability will change the other agents’ effort levels, which will in turn affect the first
agent’s payoff.

A payment function that satisfies the hypotheses of Lemma 1 need not exist.
However, there are circumstances under which an especially simple payment
function, linear in output, is optimal.

Define
cy(yH2), zi)
(10) ai(z)=——F—""—,
wi(y*(z))

where y*(z) is defined by (8).

THEOREM 2. If
1 da;(z)

—_—
(1 Py
and
. ay f(z)
(12) =0 for all j#i, j=1, ..., n,
9z;

then

(13)  pilx, 2) = a;([x — n(y*(2)] + c(y¥2), z:)

- J c (y¥s, z-;), 8) ds

0

is an optimal contract.

Thus, provided conditions (11) and (12) hold, the contract the principal offers
each agent is linear in the team’s output x. The sharing term is independent of the
number of agents in the team, but does depend upon each team member’s ability.

10 To understand the role of ¢, in the information cost (compare with equations (6) and (8)), notice that
the cost function ¢ is a reduced form; the corresponding structural form would explicitly involve the
agent’s effort. Consider one such structural form. Denote an agent’s effort by e, and suppose his cost of
effort is K(e). Define a function E(y, z) to be the minimal effort needed by an agent of type z to produce
y. Then ¢(y, z) = K(e(y, 2)), so ¢, = K'E,. Here K' is the marginal cost of effort, and E is the rate
at which the effort necessary to produce y falls as the agent’s ability z rises. Thus —c, measures the
reduced cost to the agent of producing an output appropriate to a slightly lower-type agent. That is, —c,
is the marginal benefit to the agent of imitating a lower type. Thus the larger —c, is, the more rents the
agent earns from his private information.
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With the sharing term as in (10), the agent equates his marginal cost of effort to his
marginal return, which is the share he receives of his marginal output.!!

What is the meaning of the sufficient conditions (11) and (12) for the linear
contract to work? Both are incentive-compatibility requirements. Condition (12) is
a complementarity statement: it implies that the higher one agent’s ability is, the
more effort the principal asks of the other agents. With (12), if agent j understates
his ability, the other agents will be asked to work less hard, so that total output, and
therefore agent j’s payment, are smaller. From (13), a;(z) is the fraction of marginal
team output that agent i is allowed to keep. Condition (11) says that this share
increases with the agent’s reported ability. Thus, for example, a low-ability agent
is not tempted to overstate his ability because he is then faced with a payment
function that is relatively sensitive to his effort.

The expected payment to agent / is found by taking expectations over z_; and x
in (13). Since w is the expected value of x, the first term on the right side of (13)
becomes zero. The second term is the agent’s cost. The remaining term,
E_; = [§ c.(y%(s, z_;), 5) ds, is therefore agent i’s expected profit, attributable
to his private information about his ability. The following result follows from the
proof of Theorem 2.

COROLLARY. Each agent’s rent is increasing both in his own ability and in the
other agent’s abilities.

Hence, agents prefer to belong to teams whose members have high productivity.

Note that, from (8) and (10), conditions (11) and (12) are well-defined in terms of
the model’s primitives. It is not, however, clear from inspecting (8) and (10) what
(11) and (12) mean in terms of the basic elements of the model. The next theorem
provides a more restrictive, but more understandable, set of conditions under
which linear contracts are optimal.

THEOREM 3. Suppose U(x, y, z) = x, and

(14) Cyer = 0;

yiz

Cyz  Cyyz 9(z;)
(15) —_—— e
Cy ¢y 1-G(z)

9 01 - Glz) _

(16) az;  cy9(z)) ;
17 a 1—-G(z;)
(0 az;  9(z;)

Then the linear contract (13) is optimal.

The inequality (17) is the hazard-rate condition that commonly arises in adverse-

! The optimal payment schedule is written here as a function of actual abilities z, rather than reported
abilities Z, since it has been designed to elicit correct revelation of abilities, so z = 2.
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selection problems (McAfee and McMillan 1987a, p. 708). The inequality (16)
requires monotonicity of the hazard rate weighted by the proportional rate of
change of marginal cost of effort with respect to ability. Condition (15) states (since
the first term is negative and the last is positive) that the curvature of the cost
function neither increases nor decreases too rapidly with ability. Condition (14)
requires that increases in ability reduce the marginal cost of effort at a diminishing
rate. These conditions for a linear contract to work involve combinations of third
derivatives of the cost function with hazard-rate conditions, and so are not in
themselves very informative. A set of special cases that satisfy these conditions has
the cost function c¢(y, z) being linear or quadratic and (17) holding.

COROLLARY. For the case in which the principal’s return is proportional to total
output, 0 < a;(z) = 1.

Hence no individual’s marginal rate of payment is either negative or in excess of
100 percent.

For an example, suppose the principal cares only about outputs so that
U(x, y, z) = x; abilities are distributed uniformly, so that G(z;) = z; if 0 = z; =
1; the agent’s cost function is c(y;, z;) = y;(1 — z;); and expected team output is
=TI, yJ'B, with 0 < B8 < 1/n. With these functional forms, y(y;, z;) = 2y;(1 —
z;). If we solve for y*(z) from (8), then (10) implies that «; = 1/2 fori = 1, ...,
n: remarkably, the share is independent of the agent’s own ability or his fellow
team-members’ abilities. (As is clear from the general analysis, however, this is a
knife-edge case.) Also, 6y’}‘/azj > 0, so the hypotheses of Theorem 2 are satisfied
and the linear contract is optimal. If the team has two members, each receives a half
share of any output beyond a fixed target. With three or more team members, ex
ante payments are made to the principal, who then pays out more than 100 percent
of the marginal value of output.!2

3. OPTIMAL CONTRACTS BASED ON INDIVIDUAL CONTRIBUTIONS

Suppose now we give the principal more information. The principal can
costlessly monitor the individual contributions, so that he can pay agent i according
to his contribution y; as well as, like before, all of the reported abilities. We
continue to assume, however, that the principal cannot observe the agent’s ability
z; or cost c(y;, z;): he cannot decompose an individual’s contribution into effort
and ability, so that ability remains the agent’s private information. Note that now
the principal’s knowledge of total output x is redundant: x is effectively an
imprecise measure of (y;, ... , ¥,), containing no extra relevant information.

THEOREM 4. The principal’s maximum expected utility when he monitors
individual contributions is the same as when he observes only total output.

12 Gandal and Scotchmer (1989) apply these techniques to the analysis of cooperative research and
development, and find conditions under which firms can be given incentives to do efficient amounts of
investment.
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Thus, perhaps surprisingly, there is no free-rider problem in this model. There is
no gain to the principal from monitoring. The reason for this is most clearly seen in
the case of no adverse selection, as explained in Section 1 above. Without adverse
selection, an optimal no-monitoring contract pays each individual at the margin 100
percent of marginal team output; this achieves an efficient outcome, the same
outcome as would be attained with monitoring and paying full individual marginal
products. Adding adverse selection does not break this equivalence between
contracts based on team output and contracts based on individual contributions,
because the rents that an agent receives as a result of his private information are
completely determined by the y*(z) function; and a given y*(z) can be induced by
either monitored or nonmonitored contracts.

Can the optimum again be implemented using linear contracts?

THEOREM 5. If

)
(18) — ¢y (yH2), z2;) =0,
9z;

then

(19)  p"(yi» ) =cy(yH2), z2)(y; —y¥2) + c(y¥=2), z;)
- f c.(y¥s, z-1), 5) ds
0

is an optimal contract under monitoring.

The agent’s equating his marginal cost of effort, c,, to his share of his marginal
output forces his contractual share, «;, to be ¢, as in (19). Condition (18) says that
this share must increase with ability. This is an incentive-compatibility condition:
if payments became less sensitive to output as ability increased, low-ability agents
would have an incentive to overstate their abilities. Condition (18), which ensures
the optimality of linear contracts based on individual contributions, says that, with
effort adjusted optimally, marginal production costs increase with ability. Two
effects are operating. With output held constant, higher ability reduces marginal
cost (by assumption). But an increase in ability increases the effort level that is
optimal from the principal’s point of view, and because of diminishing returns this
increases marginal cost. Condition (18) assumes that the functional forms are such
that the called-for increase in effort is large enough that the latter effect dominates.

As was discussed in Section 1, the advantage of contracts based on individual
contributions over contracts based on total output is in the incentives facing the
principal. The basis for this observation is the following theorem.

THEOREM 6. If U(x, y, z) = x, then

n

(20) 2 ey (yH(2), )y Hz) = m(y*(2)).

i=1
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Decompose payments under the linear contracts into fixed and variable pay-
ments. Then (20) says that variable payments are smaller under the monitored
contract than the expected output. The principal keeps some of the output for
himself. The inequality (20) is strict if there are decreasing returns to scale in the
team’s production.

Sometimes (18) will fail to be satisfied and a contract linear in individual
contribution, y;, will not work even though one linear in team output, x, does.
However, whenever a contract linear in x is optimal, a contract linear in a function
of y; will implement the optimum: in particular, E_; u(y;, y*;(z)) works. (This is
because the monitored contract is, by this function, in effect converted back to a
nonmonitored contract.) Since there are no natural units for what we have been
calling individual contribution to output, such a transformation changes nothing
essential.

In the example given at the end of the last section, ¢, (y§(2), z;) = 1 — z; is
decreasing in z;. Thus a monitored contract linear in individual contributions y; is
not feasible, even though, as we saw, a contract linear in team output is feasible and
optimal. However, a monitored contract linear in y/ is optimal.

In the world, as opposed to in this model, inefficiencies are undoubtedly inherent
in team production. Chinese agriculture, for example, became much more produc-
tive after the introduction of the responsibility system, under which individual
farmers were remunerated according to their own outputs rather than, as before,
according to the commune’s output (McMillan, Whalley and Zhu 1989). What our
model suggests is that the source of team problems is not the unobservability of
team members’ efforts or abilities per se. The source of team inefficiencies must be
sought elsewhere, in features assumed away in our analysis: team members’ risk
aversion (Holmstrom 1982), or collusion among team members (Itoh 1989; Weiss
1988).13

4. CONCLUSION

This paper was written by a team. How should the principal, the chairman of our
department, apportion merit pay to the agents, us, for our output, this article? Each
author of an n-authored article usually gets (1/n)th of the credit. Our theory
indicates that it is not in the chairman’s interest to use this rule. If the chairman
knew for sure our abilities, he would maximize our productivity by giving each of
us 100 percent of the credit: he could compensate by setting base salaries lower
than our alternative opportunities. If, however, the chairman were uncertain of our
relative abilities to contribute to our joint work, he should give less than 100 percent
credit to each of us; but the shares might still sum to more than 100 percent. In this
case, before this article was written, the chairman should have offered each of us
a menu of sharing arrangements, with higher shares associated with lower base
salaries. By our selection of shares, we would each have revealed our own

13 Mookherjee and Reichelstein (1990) show that the optimal individual contributions described by
Lemma 1 can usually be implemented in dominant strategies; but the group-payment scheme of Theorem
5 typically cannot be implemented in dominant strategies. This, they suggest, provides a reason for
monitoring.
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estimates of our abilities. The more able coauthor would have chosen the higher
share and thereby would have been induced to work harder.

University of Texas, Austin, U.S.A.
University of California, San Diego, U.S.A.

APPENDIX

ProOOF OF LEMMA 1. Since i chooses y; and Z; optimally, the Envelope Theorem
yields

dEfi’IT,' aE-ﬂT,‘
(AD = = —c:(yi, ) = 0.
dZi GZ,’

2, =2z

Thus, individual rationality reduces to

(AZ) EXE_[’TT,'

z; =0 =0.

Hence

(A3) ®=E|U(x,y,2)— 2 pi(x, zi, 2-)

i=1

n

=EU(x,y, z) — 2 E[m; + c(y;, 2i)]

i=1

n n l
=EE U(x,y,2)—E > ¢(yi,z)— > | E_imig(z) dz;

i=1 i=1J0

n

=E|E. U(x, y,2) — > c(yi, z:)

i=1

i=1

" : ldEfﬂTi
- > | Esi(=7,(1 = G(z)))) +f 7 (1= G(z)) dz;
0 0 Zi

=E|V(y, 2) = > c(yi, z0)| + 2 E_im;

i=1 i=1

z; =0

- E—ifl c.(yi, z))(1 — G(z;)) dz;
0
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n

=E|V(y, 2) — > c(yi, i)

i=1

+ S E. f exom 2) 2 o
0 9(

i=1 zi)

’ 1 -G(z;)
=E\V(y, 2)— 2 |c(yi, z0) = c.(vi, 20) e
i=1 9(z;)

=EV(y, z) — > y(¥i» zi).
i=1

The third line uses Fubini’s theorem, the fourth uses integration by parts, and the
fifth optimizes by setting E_,-w,-|zi=0 = 0. It follows immediately that y*(z)
pointwise maximizes . Q.E.D.

ProoF OF THEOREM 2. The profit of a type z; agent reporting Z; and contributing
yi is

(A4)  7i(z;, 2y yi) = ai(Zi, 22w (yis y5i(2i, 2-0)) — w(¥*(2i, 2-9))]

+c(yH2i, 2-1), 2i) —c(yiy 20) — f c (yHs, z-;), s) ds.

0
Now
(AS) my, = ai(Z, 2-)pi — ¢y,
(A6) Tyy, = @iy = Cyy < 0.

Thus the agent reporting Z; chooses y; satisfying

C)‘(j\)IW Zi)
(A7) a (2, 2-) = - A .
ST w9 yEi(Rs 22)
Thus
da; Ccy ay:t
TR (Zi, z-)) +— > By o (ziy 2-4)
09, i i i <i
(A8) —= = 0.
9Z; Cyy  Cy
T T T M
M i
Note
(A9) Vil =z, =y H2)
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To prove incentive compatibility, it is sufficient to prove
(A10) E_imi(ziy 2, ) = E_imi(zi, zi, yH(2)).

However, this is implied by

d
(A11) E_i — mi(zi5 zi» §1) =0
90Z;
and
92
(A12) - wi(2i, 2, 1) =0,
az,-az,-

since these imply

(A13)

Py E_jmi(z;, 2i,9) Z 0asz; Z z;.
i

To prove (All), it is sufficient to prove

d
Al4 — mi(2i, 2is 9z, o, = 5 milzis zis y(20)).
(A14) o 7i(2is 20, 90z, =, " (zis 212 ¥(21))
Zi
(A15) mi(zi, zi, YH(zy) = —f c.(y¥(s, z-), s) ds.
0
d?T,'
(A16) = —c.(yK2), z)).
Zj
877,- . R
(A17) — (zi5 Zi» i) = —c.(9i, 2i).
9z;
Thus
Al8 omi 20, 9 a
( ) 3z, (zis Zis i)z, =, _dz,-’
as desired.

A proof of (A12) follows.

Al19 m 9 9
( ) 03, 02, a2, [—c (9i, zi)]
Do Q.E.D
= —C, = 0. ELD.
€z 9Z;

The proof of Theorem 3 will make use of the following lemma. (See, for example,
Arrow and Hurwicz 1977, pp. 326, 371.)
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LEMMA. Suppose A is a negative semidefinite symmetric n X n matrix with

Ay =01ifi#j. Then A~ is composed entirely of nonpositive elements.

ProOF oF THEOREM 3. To prove (12) note that

(A20) L= 6tz 0
=c, ————— =
& ' 9(z;) €z
and (using (15))
1 - G(Z,‘)

(A21) Yyy = Cyy — —Q(T Cyyz = 0.
Thus vy is convex in y;.
(A22) . o 1=G(z;)| 1-G(z) 0

pz - o - y = )

Ty T O T e T (20 g(z) ©F
since ¢y, = 0.
Let 'y = (yy(¥1, 21), «=+» ¥y(¥n» 24)), so that y* satisfies, since V = u,

(A23) my (¥%(2)) = Ty (y*(2), 2) = 0.
Thus
(A24) y*(z) = [/J'yy - Fyy]_lryZ’

Since u is concave and yis convex in y (by (A21)), u,, — I'y, is negative definite

and has nonnegative off-diagonal elements. Thus, from the preceding lemma,

(myy — Tyy) ~1 has nonpositive elements. By (A22), I'y, is a diagonal matrix with

nonpositive elements, so y*'(z) is composed of nonnegative elements, as desired.
The proof of (11) follows. Since V(y, z) = w(y), y* satisfies

1 — G(Zi)
(A25)  w;(y*(2)) = v, (yH2), z;) = ¢, (yX2), z;) — ) ¢y (yH2), zi).
Thus
cy(yH(2), zi) 1
2 . = = =
S O R e T

9(z;) ¢, (y¥2), z;)

Thus
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da; 0 1—G(z;) ey (YH2), 2
(A27) sgn (—a—>=sgn< (zi) ¢y (yH(2) Z))

3z; 0z 9(z)  cy(y¥2), 21)

d ¢y 1 =G(z;)
=sgn {— — ———
g dz; ¢y 9(z;)

+1—G(z;) 9 cy;\ ayi(z)
9(z)) \oy; ¢, ) 0z |

60(,»
oo, Q.E.D.
0z;

So, using (15) and (16),

PrOOF OF THEOREM 4. As in Theorem 1,

A8 dE_;m; O0E_;m;
( ) dZ[ - BZ[ - —Cz(yi’ Zi)'

It follows that equation (A3) still holds (the proof is the same), and thus the
principal obtains the same utility as before. Q.E.D.

PROOF OF THEOREM 5.
(A29) mi(zi, Z;5 yi) = Cy(}”ik(%i, z-1), 2lyi —y N2, z-0)]

+ C(y;k(zh Z'—i)) - C(yi7 Zi)_f cz(Yl*(s’ Z—i)9 S) ds.
0

(A30) Ty, = Cy(yi'k(zi’ Z—f)’ 21) - Cy(yi’ Zi)~
(A31) Ty, = —Cyy < 0.

Thus, an agent choosing Z; chooses J; to satisfy

(A32) cy(yH2iy 2-0)s 2)) = ¢y (P15 24).
Thus,
d
a9, 6_2_,_ Cy(}’?k(fi, Z-i), 2i)
(A33) T e Gr 2D = 0.
It is easily seen that
(A34) omi = dmi (zi» zi> 9i).
0z; o dz;
(A35) 2 m(zi5 25 9i) = —c.(3is ).

0zZ;
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9? a9
(A36) m m(2i, 2is Pi) = —Cy, 52—1_2 0,
forcing incentive compatibility. Q.E.D.
PROOF OF THEOREM 6.
n n
(A37) 2 o (yH2), 2)yH2) = 2 ail(Dpi(y*(2)yi(2)

i=1 i=1

> wi(y*(2)yH2) = p(y*(2)).

i=1

IA

The first inequality by (A26), the second by the concavity of u. Q.E.D.
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