
Who Moderates the Moderators? Crowdsourcing Abuse
Detection in User-Generated Content

Arpita Ghosh
Yahoo! Research

Santa Clara, CA, USA
arpita@yahoo-inc.com

Satyen Kale
Yahoo! Research

Santa Clara, CA, USA
skale@yahoo-inc.com

Preston McAfee
Yahoo! Research

Burbank, CA, USA
mcafee@yahoo-inc.com

ABSTRACT
A large fraction of user-generated content on the Web, such
as posts or comments on popular online forums, consists
of abuse or spam. Due to the volume of contributions on
popular sites, a few trusted moderators cannot identify all
such abusive content, so viewer ratings of contributions must
be used for moderation. But not all viewers who rate content
are trustworthy and accurate. What is a principled approach
to assigning trust and aggregating user ratings, in order to
accurately identify abusive content?
In this paper, we introduce a framework to address the

problem of moderating online content using crowdsourced
ratings. Our framework encompasses users who are untrust-
worthy or inaccurate to an unknown extent — that is, both
the content and the raters are of unknown quality. With no
knowledge whatsoever about the raters, it is impossible to
do better than a random estimate. We present efficient algo-
rithms to accurately detect abuse that only require knowl-
edge about the identity of a single ‘good’ agent, who rates
contributions accurately more than half the time. We prove
that our algorithm can infer the quality of contributions with
error that rapidly converges to zero as the number of obser-
vations increases; we also numerically demonstrate that the
algorithm has very high accuracy for much fewer observa-
tions. Finally, we analyze the robustness of our algorithms
to manipulation by adversarial or strategic raters, an impor-
tant issue in moderating online content, and quantify how
the performance of the algorithm degrades with the number
of manipulating agents.

Categories and Subject Descriptors
H.1.2 [Information Systems]: Models and Principles
User/Machine Systems

General Terms
Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’11, June 5–9, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0261-6/11/06 ...$10.00.

Keywords
User-generated content, Moderation, Crowdsourcing

1. INTRODUCTION
The Web is growing, and the extent of active user partic-

ipation on the Web is growing with it as well. Most web-
sites that display content now also allow user comments and
discussions, and attract a huge volume of user posts— for
instance, the popular website Slashdot receives over thou-
sands of comments on its posts each day, while the more
popular articles on Yahoo! News might receive thousands of
comments each. Many of these posts are insightful or infor-
mative, or otherwise add value to the reader’s experience,
but there is a large quantity of abuse as well: according to
a recently released study, as much as 95% of user-generated
posts on Web sites are spam or malicious1.

As the volume of user-generated content (UGC) increases,
a solitary trusted moderator cannot single-handedly deal
with the problem of identifying bad content. Even a small
group of hand-picked moderators is grossly inadequate—
quoting from Slashdot, “The (moderation) system worked
well, but as Slashdot continued to grow, it was obvious that
these 25 (trusted) people wouldn’t be enough to keep up
with the thousands of posts we were getting each day”. The
only solution to dealing with the problem of moderating the
huge volume of user-generated content is to crowdsource the
job of moderating content as well. Indeed, most websites
now allow users the option to rate individual pieces of con-
tent as good or bad, usually using thumbs-up/thumbs-down
style buttons, with a view to using this feedback to infer
quality.

The problem of moderating user-generated content using
viewer ratings, though, is not an easy one — if users were
all reliable, these ratings would be adequate to determine
whether a particular contribution is inappropriate. But not
all users who rate content rate it ‘right’: even the most ev-
idently undesirable posts receive a non-zero number, and
sometimes a significant fraction, of thumbs-up votes, and
conversely perfectly good content is voted down by trolls as
well. To make matters worse, raters are not simply ‘good’ or
‘bad’, consistently rating content right or consistently rat-
ing it wrong— the same user might rate some contributions
accurately but some others inaccurately, either deliberately
or due to random error from misjudging the threshold of
acceptability. So we have a situation where in addition to
content itself being good or bad, the ratings themselves may

1http://www.daniweb.com/news/story258407.html

be questionable, leading to the following dilemma: when a
user votes down a piece of content, how do we know whether
the rating or the content is bad?
If we only observe users’ ratings for a single contribution,

the best we can do in the absence of any other information
is to treat all ratings as equally likely to be correct, and use
simple aggregation by majority vote. But there is typically
more information available, since most systems that allow
users to rate content also require them to be logged in to
do so— this allows us to observe users’ ratings over many
contributions. Now suppose we have some way to estimate
the appropriateness of some contributions, perhaps using
ratings from some ‘good’ users whose identities are known
to the system. Can these extra observations be used to do
better, and under what conditions— what and how much
prior information do we need about raters, and how reliable
do we need our good raters to be, to be able to effectively
use this information?
Most moderation schemes used by websites hosting

user-generated content indeed use information about a
user’s past behavior to decide whether she is reliable or
trustworthy enough to moderate, and how much moder-
ation power to assign to her2. But what is a measure
of reliability or trust anyway? We emphasize that the
primary goal of a moderation system is not deciding which
raters are trustworthy or to what extent, but rather only
to accurately infer the quality of each contribution— any
estimate of a rater’s quality is merely a means towards this
end. The question of deciding what a suitable measure of
trust is and how to estimate it, is therefore closely related
to the question of how to aggregate ratings to accurately
estimate the appropriateness of each contribution. What is
a principled approach to assigning ‘moderation power’ and
aggregating ratings, and how do we quantify susceptibility
to manipulation?

Our Contributions. In this paper, we introduce a
framework within which to address the problem of mod-
erating user-generated content, when the viewers who rate
content are not perfectly accurate or trustworthy, and have
unknown accuracy. Our model allows us to quantify the
robustness of the moderation scheme in the presence of ma-
nipulation by adversarial raters of different kinds: this is
an important factor in the UGC moderation context where
trolling, either to promote a particular agenda or to gener-
ally attack the moderation system, is a common occurrence.
While we phrase our discussion in terms of abuse on on-

line forums, e.g., spam or malicious content in comments on
Slashdot or YouTube, our framework also applies to other
instances of UGC where some kinds of contributions are
clearly undesirable, and recognizable (albeit with error) as
such. One particular example is biased reviews of products
or services, such as when a user trying to promote a partic-
ular product or service (or bring down a competing product
or service) posts an evidently biased review; this is not un-
common, for example, on Amazon. We also note that while
in this paper we only address the problem of moderation, or
identifying inappropriate content, this model could provide a
first step for addressing further questions like accurately in-

2A number of these (e.g., StackOverflow) assign points based
on behavior, and assign moderation privileges to different
extents based on the number of accumulated points.

ferring more fine-grained ratings or accurately ranking con-
tent as well; see §7.

In our model, contributions are either ‘good’ or ‘bad’,
and each rater, or agent, i rates contributions correctly
with some unknown probability ψi: ψi can be thought
of as a continuous version of the measure of a rater’s
trustworthiness that is used for assigning moderation
privileges by various online moderation schemes. Clearly,
with no knowledge at all about agents’ rating abilities ψi,
it is impossible to predict contributions’ qualities more
accurately than random guessing. We show that all we need
to know is the identity of a single agent with ψi > 1/2, i.e.,
an agent who rates accurately more than half the time, to
achieve good performance— we emphasize that we do not
need to know the exact value of ψ for this agent, nor do
we need her to rate well almost all the time, or rate all
items. We present efficient algorithms based on spectral
decomposition that, armed with the identity of this one
‘good’ agent, infer the quality of contributions with error
rate that rapidly falls to zero as we observe more and more
contributions; we also numerically verify that the algorithm
identifies inappropriate content with high accuracy even for
much fewer observations.

Organization. We begin with presenting our model in
§2. In §3, we give an algorithm for estimating the quality
of contributions based on relating the top eigenvector of
the matrix E[UU⊤], where U is the matrix of observations,
to the vector of actual contribution qualities, and analyze
its performance (§3.1). In §4, we present and analyze an
online version of this algorithm which estimates the rating
abilities of the agents, ψi, using the same eigenvalue de-
composition, and then infers the quality of each additional
contribution as it arrives based on these estimates of ψi
and its ratings. (We note that these algorithms have almost
indistinguishable performance in numerical simulations,
see §6.) Finally, in §5, we analyze the robustness of our
algorithms to manipulation designed to attack the entire
moderation system, i.e., affect all ratings, as well as to
manipulations targeted at a single contribution, such as by
a group of agents with an agenda.

Related Work. The problem of moderating user-
generated content is a major issue that is widely discussed
on online forums, and there are even companies3 consult-
ing on best practices for addressing UGC abuse. These
focus on solutions like content filtering based on the text
of contributions, and ad hoc solutions for the problem of
aggregating viewer ratings. While there has recently been
work [13, 15, 8, 14] on inferring labels obtained from crowd-
sourcing image-annotation tasks, the specifics of the prob-
lem and consequently the model and approaches differ from
ours, and to the best of our knowledge there is no work on
formal models or algorithmic approaches to the problem of
crowdsourcing the moderation of UGC.

There is a growing body of work on user-generated con-
tent. The recent work [6] addresses quality in UGC from the
perspective of incentivizing users to contribute high-quality
content. While [6] assumes nonstrategic accurate ratings by
viewers and uses these to incentivize contributors, we do not
address the issue of disincentivizing spammers — we merely

3www.eModeration.com

take their presence as given and ask how to accurately iden-
tify spam content in the presence of inaccurate ratings. We
also note that while we address robustness to manipulation,
we do not address the issue of actually incentivizing users
to rate accurately. [3] proposes an algorithm to incentivize
users to rate honestly in revenue-generating ranking and rep-
utation systems like search engines or online retailers such
as Amazon that is based on sharing revenue with raters;
whether these incentives and models apply to UGC is an
open question.
The problem of moderating online content is reminiscent

of the literature on voting [4], as well as recommender [1]
and reputation systems [5]. The important distinction with
the voting and recommender systems literature arises be-
cause items, or candidates, have an underlying quality in our
problem: a contribution is either abuse or not4.In contrast,
agents have different preferences over items in voting prob-
lems, i.e., items have no underlying common quality. This
distinction also applies to recommender systems, where dif-
ferent users might have different opinions about the same
item; again, ratings for items are subjective and there is no
notion of underlying item quality. Thus the goal of a rec-
ommender system is to decide whether a user might like a
particular item given his and other users’ ratings, whereas
our problem is to identify whether the item is good or bad.
The distinction with the reputation system literature is

the following: the goal of a moderation system is to judge
content, and not the raters— any estimate of raters’ abili-
ties is useful only to the extent that it helps accurately rate
content. Specifically, if a user is producing bad and good
comments, we would like to identify the bad comments as
bad and the good ones as good, rather than infer that the
user produces good content half the time. While one could
imagine estimating the ‘reputation’ of each contribution via
user ratings, the nature of the problems addressed by the
reputation system literature, such as building up a high
reputation to cash in on it or starting afresh with a new
identity after earning a bad reputation, do not quite apply
to this mapping since contributions are not active agents in
the sense used in reputation systems. We note that there
is also work on inferring reputation in the presence of Sybil
attacks, i.e., the creation of numerous fake identities; see for
instance [16]. Our algorithms can tolerate a small constant
fraction of Sybil nodes.
Technically, the analysis of our algorithm is based on con-

centration bounds for random matrices. Similar analysis has
been applied for data mining previously [2], where the main
technical tool used is a high probability bound on the spec-
trum of random matrices. However, such techniques yield
very weak bounds in our application. We resort to a different
technique, a recently developed Chernoff-type concentration
inequality [10] for sums of random rank one matrices, which
give us much tighter performance guarantees. To our knowl-
edge, this is the first application of such Chernoff bounds to
the analysis of data mining algorithms.

2. MODEL
The main components of our model are the contributions,

which are of unknown quality, and the raters, who rate these

4We note that here we are not interested in distinguish-
ing between excellent and mediocre/poor content, i.e., in
ranking content according to quality, but only in identifying
abuse or spam which exist plentifully in online UGC sites.

contributions with unknown accuracy: we would like to ag-
gregate these ratings in such a way as to accurately identify
the quality of contributions. While quality in UGC spans the
whole spectrum from excellent contributions to mediocre-
poor content which is neither harmful nor valuable, all the
way down to abuse, we focus here on abuse, or unambigu-
ously bad content such as spam, malicious links, posts on
entirely unrelated topics, and explicit comments. We next
formally describe the model.

There are n users, or agents, i = 1, . . . , n, who rate con-
tent. There are T contributions, or items, t = 1, . . . , T . Each
item is either good, corresponding to having quality qt = 1,
or bad, corresponding to having quality qt = −1. The ‘bad’
items correspond to spam or abusive contributions that are
unambiguously undesirable to the website. The remaining
‘good’ contributions, while not necessarily all of equal qual-
ity, are the non-spam contributions.

The system does not know the values of qt, and would like
to infer the qualities of items using agents’ ratings.

Agents rate items as ±1, corresponding to voting using
the thumbs-up/thumbs-down button which is very widely
used online to obtain viewer feedback on content. Different
agents have different probabilities of rating items correctly:
ψi is the probability that agent i rates items correctly, i.e.,
that her rating agrees with the true quality of the item. That
is, suppose uti ∈ {−1, 1} is agent i’s rating for item t. Then,

uti =

{
qt w.p. ψi
−qt w.p. 1− ψi.

We emphasize that the values of ψi are unknown to the
system, i.e., the ψi are latent variables and the system does
not know in advance how well each agent rates contributions.

In general, agents might not rate all items. We will use
pi to denote the probability that agent i rates an item. For
simplicity, we will present most of our analysis for pi = 1,
the case where all agents rate all items, and indicate how to
extend the analysis to incomplete ratings.

With no knowledge whatsoever about the ψi values, it is
easy to see that there is no hope of correctly inferring the
quality of a contribution even if we have ratings from all
agents on a very large number of items. We therefore make
the following very weak assumption about the information
the system has about the ψi. We assume that the agent
knows the identity of one ‘good’ or trustworthy rater, where
our requirement of goodness is also very weak— suppose
agents are numbered so that this good agent is agent 1. We
will assume that agent 1 rates items correctly strictly more
than half the time: ψ1 > 1/2.

We emphasize that we do not assume that the exact value
of ψ1 is known to the system, nor that ψ1 is very close to
1— we simply need to know the identity of a single user
with ψ > 1/2. We will sometimes use γ to denote how much
better than random agent 1 rates, i.e., γ = ψ1 − 1/2; by
assumption, γ > 0.

Definition 2.1 (Competence: κ, κ̄). Define the
competence of an agent i to be κi = (2ψi−1)2 = 4(ψi− 1

2
)2:

κi is a number in [0, 1] which indicates how informative
i’s rating is in determining the quality of an item, with 0
being the least informative corresponding to ψi = 1/2, and
1 being fully informative corresponding to ψi = 1 or ψi = 0.
Define the total competence κ =

∑
i κi, and the average

competence

κ̄ =
κ

n
=

4

n

n∑
i=1

(ψi − 1
2
)2.

The average competence will show up repeatedly in the
analysis of our algorithm, with the error being inversely pro-
portional to the average competence.
Given a set of observed ratings U and knowing that agent

1 has ψ1 > 1/2, our goal is to infer the qualities of items,
i.e., the vector q = [qt], as well as possible.
Notation. q is the T × 1 column vector of item qualities,

and ψ is the n × 1 vector of probabilities of agents voting
correctly. For a vector v, we will use v̂ to denote the unit
vector in the direction of v, i.e., v̂ = 1

∥v∥v, where ∥v∥ denotes

the ℓ2 norm of v.
We use A⊤ to denote the transpose of a matrix A. We

use ∥A∥2 to denote the spectral norm of a matrix A, i.e., its
largest singular value.

3. ESTIMATING q
In this section, we will present our first algorithm for es-

timating the qualities q using the observations U . The al-
gorithm is based on a spectral decomposition of the matrix
UU⊤, and also forms the basis of an online algorithm which
we describe in the next section. We begin with some prelim-
inaries that motivate the algorithm, and then analyze and
bound the error rate as a function of the number of obser-
vations n, T and the average competence κ̄ in Theorem 3.1.
We discuss the efficiency of the eigenvector computation re-
quired by the algorithm in §3.3.
Let U = [uti] represent the matrix of observed ratings,

where the ith column ui is the vector of agent i’s ratings on
the items 1, . . . , T . The expected value of uti is

E[uti] = qtψi − qt(1− ψi) = qt(2ψi − 1).

Therefore, we have

E[U] = q(2ψ − 1)⊤,

where recall that q is the T × 1 column vector of item qual-
ities, ψ is the n × 1 vector of probabilities of agents voting
correctly, and 1 denotes the n × 1 column vector with all
coordinates equal to 1. Note that E[U] is a rank-one matrix,
with left singular vector proportional to q, and right sin-
gular vector proportional to (2ψ − 1). This singular value
decomposition of E[U] suggests an algorithm for estimating
q from the singular value decomposition of U . To analyze
this algorithm, though, we will use the fact that the top
left singular vector of U is identical to the top eigenvector
of UU⊤, and relate the top eigenvector of UU⊤ to the top
eigenvector of its expected value E[UU⊤]. Next, we write
E[UU⊤] in terms of q and ψ (note that E[UU⊤] is not the
same as E[U]E[U⊤]).
Let ϕti ∈ {−1, 1} be a random variable taking the value 1

if agent i rates item t correctly (which happens with prob-
ability ψi), and −1 otherwise (which happens with proba-
bility 1 − ψi). Then, uti = ϕtiqt. (While ϕti has the same
distribution for each t, the realization of course might be dis-
tinct and thus the random variables need separates names.)
If t ̸= s, then

ϕtiϕsi =

{
1 w.p. ψ2

i + (1− ψi)
2

−1 w.p. 1− ψ2
i − (1− ψi)

2.

so

E[ϕtiϕsi] = ψ2
i + (1− ψi)

2 − (1− ψ2
i − (1− ψi)

2)

= (2ψi − 1)2.

If t = s, then ϕtiϕsi = 1, so E[ϕtiϕsi] = 1 also.
The (s, t) element in UU⊤ is

∑n
i=1 usiuti =

qsqt
∑n
i=1 ϕsiϕti, with expected value

E[
∑n
i=1usiuti] = qsqtE

[∑n
i=1ϕsiϕti

]
=

{ ∑n
i=1(2ψi − 1)2 if t ̸= s

n if t = s.

Therefore, given the latent model ψi of agents’ proba-
bilities of rating items correctly, we can write the matrix
E[UU⊤] as

E[UU⊤] =
(∑n

i=1(2ψi − 1)2
)
qq⊤ +

(
n−

∑n
i=1(2ψi − 1)2

)
I

= κqq⊤ + (n− κ)I, (1)

where κ is the total competence (Definition 2.1), and I is
the T × T identity matrix.

This matrix E[UU⊤] therefore has a very simple spectral
decomposition: it has top eigenvalue

λ1 = κ∥q∥2 + (n− κ) = κT + (n− κ)

with corresponding eigenvector q. The remaining eigenval-
ues λi, for i ≥ 2, are all equal, with value n − κ, and the
corresponding eigenvectors lie in the orthogonal complement
of the space spanned by q. This inspires the following algo-
rithm for estimating q from the observations U .

Algorithm Spectral-Rating.

1. Compute the top eigenvector v of the matrix UU⊤

(scaled so ∥v∥ = 1), and let s = sgn(v) (component-
wise sign).

2. If u1 · s ≥ 0, set σ = 1, else set σ = −1.

3. Output q′ = σs as the estimated quality vector.

The first step computes the top eigenvector v of UU⊤,
inspired by the fact that the top eigenvector of E[UU⊤] is q.
Now note that if v is an eigenvector of UU⊤, then so is −v,
but these correspond to exactly opposite estimates of the
items’ qualities. How do we decide which sign to choose for
the eigenvector? The second step uses the fact that agent 1
rates items correctly more than half the time to choose the
sign for the eigenvector based on correlation with agent 1’s
ratings. The third step simply estimates the quality of item
i as the sign of the corresponding entry in σs.

Now, if we had access to the matrix E[UU⊤], extracting
its top eigenvector would give us exactly the vector of ac-
tual qualities q. But of course, we only have access to U ,
and therefore UU⊤. How closely does the top eigenvector of
UU⊤, which is a random matrix with mean E[UU⊤], resem-
ble the top eigenvector q of E[UU⊤]? The difference between
these two eigenvectors will tell us how close q′, our estimate
of the quality derived from the top eigenvector of UU⊤, is to
the actual quality vector q. We next analyze this difference.

3.1 Analysis
Our main result is Theorem 3.1, the proof of which is

structured as follows. First, we adapt a matrix version of a
Chernoff bound which tells us that the random matrix UU⊤

and its expectation E[UU⊤] are not very different, as mea-
sured by the spectral norm, with some probability. We use
this bound to say that with the same probability, every pair
of corresponding eigenvalues of UU⊤ and E[UU⊤] are close.
We use both these results to bound the angle between the
top eigenvector v of the observed matrix UU⊤, and q, which
is the top eigenvector of the expectation E[UU⊤]. Finally,
we translate this bound on the angle between the two eigen-
vectors to the error in the algorithm, which is the number of
coordinates in which q and v differ in sign. The probability
with which this bound on the error holds is given by a union
bound over the probability with which the Chernoff bound
holds, and the probability that we choose the correct sign
for v based on the correlation with the ratings of the known
good agent.
We begin with the following bound, from [10], on the dif-

ference between a random matrix and its expectation (mea-
sured by the spectral norm)5:

Lemma 3.1 ([10]). If vectors y1, y2, . . . , yn ∈ Rd are
drawn from independent distributions such that for some pa-
rameter M we have ∥yi∥ ≤ M , then there is an absolute
constant c (independent of M and the dimension d) such
that for any δ > 0 we have

Pr

[∥∥∥∥∥ 1n
n∑
i=1

yiy
⊤
i − E

[
1

n

n∑
i=1

yiy
⊤
i

]∥∥∥∥∥
2

> δ

]
≤ 2 exp

(
−cnδ2

log(n)M2

)
,

Now, UU⊤ =
∑
i uiu

⊤
i , where ui is the T × 1 column

vector of ratings by agent i. Since each entry in ui is either
1 or −1, ∥ui∥2 = T . Therefore, for our problem, setting

yi = ui and M =
√
T we get

Pr

[∥∥∥∥ 1nUU⊤ − 1

n
E[UU⊤]

∥∥∥∥
2

> δ

]
≤ 2 exp

(
−cnδ2

log(n)T

)
.

(2)

So for δ =
√

log(n)T log(4/η)
cn

, the RHS above becomes smaller

than η/2. Thus, w.p. at least 1− η/2, we have

∥UU⊤ − E[UU⊤]∥2 ≤ nδ. (3)

We assume this is the case from here on.
The following lemma (Appendix A, full version), says that

if the difference of two positive semidefinite matrices (here,
UU⊤ and E[UU⊤]) has a small spectral norm, then the top
eigenvectors of the two matrices cannot be too far away from
each other if (one of) the matrices have an adequate spectral
gap, i.e., difference between the first and second eigenvalue.

Lemma 3.2. Let A and B be symmetric, positive semidef-
inite matrices such that ∥A−B∥2 ≤ δ. Let v1 and w1 be the
unit eigenvectors corresponding to the top eigenvalues of A
and B respectively. Let λ1 and λ2 be the top two eigenvalues
of B. Then

(v1 · w1)
2 ≥ 1− λ2 + 3δ

λ1
.

This is indeed the case with the matrix E[UU⊤], where
the difference between the top two eigenvalues is large when

5Note that the statement of the bound in [10] assumes that
the vectors yi are drawn independently from identical dis-
tributions. It is easy to check that their analysis carries
through to give the stated bound even if the distributions of
the yi vectors are different, as long as the vectors are drawn
independently.

the number of items T is large, which is the regime of
interest, corresponding to moderating a large number of
contributions. Applying this lemma (with A = UU⊤ and
B = E[UU⊤]), we get that

(q̂ · v)2 ≥ 1− λ2 + 3nδ

λ1
,

where q̂ = q√
T

is the unit vector in the direction of q, and

v is the unit eigenvector of UU⊤ computed in Step 1 of the
algorithm.

Using the values λ1 = κT + (n− κ) and λ2 = (n− κ), we
get that

(q̂ · v)2 ≥ 1− n− κ+ 3nδ

κT + (n− κ)
.

For our choice of δ =
√

log(n)T log(4/η)
cn

, we get that with

probability at least 1− η/2, we have

(q̂ · v)2 ≥ 1− ϵ/2, (4)

where, assuming T > n,

ϵ = 2 ·
n− κ+ 3n

√
log(n)T log(4/η)

cn

κT + (n− κ)
<

8

κ̄

√
log(n) log(4/η)

cnT
.

(5)
So far we have shown that (q̂ · v)2 must be small with

high probability. In Lemma 3.3 below, we show that when
T (and n) are large enough, we choose the right sign for v:
specifically, if T > 2

γ2
log(4

η
), then with probability at least

1−η/2, we have q̂·(σv) ≥ 0 (recall that γ = ψ1−1/2). In this

case, we can we conclude that q̂ ·(σv) ≥
√

1− ϵ/2 > 1−ϵ/2,
i.e., the angle between the vectors q̂ and v is small with high
probability.

Next we will translate this to a bound on the actual num-
ber of errors made by the algorithm in its estimate. Let
M = {i : qt = −q′t} denote the set of items on which our
estimate is wrong. Since q̂ and σv both have unit norm, we
have

∥q̂ − σv∥2 = 1 + 1− 2(q̂ · σv) < ϵ. (6)

But,

∥q̂ − σv∥2 ≥
∑
t∈M

(
qt√
T

− σvt

)2

≥
∑
i∈M

1

T
=

|M |
T
. (7)

The second inequality follows because for t ∈ M , qt ̸= q′t,
and q′t = sgn(σvt) so that | qt√

T
− σvt| ≥ 1√

T
. This implies

that the fraction of errors is bounded by ϵ.
The following lemma shows that we choose the right sign

for the estimated ratings vector when T and n are large
enough.

Lemma 3.3. If T > 2
γ2

log(4/η) and n
log(n)

> 128
cκ̄2 , then

with probability at least 1− η/2, we have q̂ · (σv) ≥ 0.

Proof. Assume without loss of generality that the vector
v obtained at the end of step 1 of the algorithm satisfies
q̂ · v ≥ 0. Then we want to show that with high probability,
u1 · s ≥ 0, and thus we choose σ = 1 and q̂ · (σv) ≥ 0.

For this, we make use of the fact that we know that user 1
is good with ψ1 > 0.5. We have ψ1 = 0.5+γ, where γ > 0 is
a constant. Then for any item t, E[ut1qt] = ψ1 − (1−ψ1) =
2γ. Thus, E[u1 · q] = 2γT . Hoeffding bounds say that for

T independent random variables X1, X2, . . . , XT ∈ {−1, 1},
for any δ > 0, we have

Pr

[
E

[
T∑
t=1

Xt

]
−

T∑
t=1

Xt ≥ δ

]
≤ exp

(
−δ2

2T

)
.

Applying this bound to our setting with Xt = ut1qt and
δ = γT , we get

Pr[u1 · q < γT] < exp(−γ2T/2).

So if T > 2
γ2

log(4/η), then the probability that u1 · q < Tγ

is at most η/2. Thus, with probability at least 1 − η/2, we
have u1 · q ≥ γT , which implies that

|{t : u1t = qt}| ≥ (1/2 + γ/2)T.

Now, because we assumed that q̂ · v ≥ 0, the same calcula-
tions as in inequalities (6) and (7) applied to the vectors q̂
and v (instead of σv) imply that

|{t : qt ̸= st}| < ϵT.

Thus, we have

|{t : u1t = st}| > (1/2 + γ/2− ϵ)T ≥ T/2,

which is equivalent to u1 · s ≥ 0. The inequality above holds
if ϵ ≤ γ/2. This is indeed true for T > 2

γ2
log(4/η), equation

(5) implies that ϵ < 1
κ̄

√
32 log(n)

cn
· γ ≤ γ/2 for the specified

range of n.

This finally gives us the following high probability bound
on the fraction of errors made.

Theorem 3.1. There is a constant c such that if T >
2
γ2

log(4/η) and n
log(n)

> 128
cκ̄2 , then for any η ∈ (0, 1), with

probability at least 1− η, we have

1

T
|{t : q′t ̸= qt}| ≤

8

κ̄

√
log(n)

cnT
log(

4

η
).

The theorem essentially says that when T and n are large
enough, the fraction of errors is bounded with high proba-

bility by O(
√

log(n)
nT

). This is a vanishing fraction of errors

as n and T become large. Note also the inverse dependence
of ϵ on the average competence, κ̄: the larger the κ̄, the
smaller the error. This precisely quantifies how the agents’
ability to rate accurately, i.e., the ψi, affect performance.
We discuss this in greater detail in §5.
We note that the algorithm actually delivers high accuracy

even for much smaller values of n, T than predicted by this
bound; we include numerical simulations demonstrating this
in §6 (these simulations involve incomplete ratings, which
are analyzed next.)

3.2 Accounting for Incomplete Ratings
In reality, not all agents rate all items, and a number of

entries in the matrix U may be missing: the (i, j) entry in U
is missing if agent j does not rate item i. The algorithm and
analysis above can be extended to deal with this case as well,
as follows. Suppose that agent i rates items independently
with probability pi. Set uti = 0 if agent i does not rate item
t. Then,

uti =

 qt w.p. piψi
−qt w.p. pi(1− ψi)
0 w.p. 1− pi.

Using similar calculations as those for obtaining (1), it is
easy to check the following:

E[UU⊤] = (
∑
ip

2
i (2ψi − 1)2)qq⊤ + (

∑
ipi − p2i (2ψi − 1)2)I.

This expression reduces to (1) in the case that all pi = 1.
We can now analyze the same algorithm as before. Re-

peating the same calculations as in the previous section, we
immediately obtain the following bound on the error rate;
the proof is deferred to Appendix B in the full version.

Theorem 3.2. There is a constant c such that if T >
3

p1γ2
log(4/η) and n

log(n)
> 88p1

cS̄2 , then for any η ∈ (0, 1),

with probability at least 1− η, we have

1

T
|{t : qt ̸= q′t}| ≤

8

κ̄p

√
logn

cnT
log(4/η). (8)

Structurally, the bound is similar to that of Theorem 3.1.
The only difference is that the dependence on κ̄ is replaced

by the same dependence on κ̄p =
∑

i p
2
i (2ψi−1)2∑

i pi
. If all the

pi’s are equal to some value r, then the κ̄p = rκ̄; so the
bound below says that the fraction of errors increases by a
factor of 1

r
.

3.3 Computing Eigenvectors Efficiently
Our algorithm for estimating the qualities of contributions

relies on computing the eigenvector of a T × T matrix. T
is likely to be rather large in practice, since crowdsourcing
moderation is necessary only when the number of contribu-
tions are large; also, the algorithm’s performance improves
with increasing T , so we would like to use as many observa-
tions as possible as input. Here we discuss the feasibility of
this computation.

Eigenvector computations are extremely efficient in prac-
tice [11]. In particular, computing the top eigenvector of
a positive semidefinite matrix can be done very efficiently
using iterative methods such as the power method or the
Lanczos iteration. The benefit of these iterative methods is
that they only rely on matrix-vector products and thus can
take advantage of sparsity in the matrix. In our case, even
though the matrix UU⊤ can be dense, computing its prod-
uct with a vector can be done in linear time in the number
of non-zero entries of U : simply multiply by U⊤ first, and
then multiply the result by U .

In our application, we actually do not even need to com-
pute the top eigenvector exactly: rather, it suffices to ap-
proximate v, the top eigenvector of UU⊤, in the following
sense. Find a vector y such that (v · ŷ)2 ≥ (1 − ϵ′), where
ϵ′ is an error parameter. Then ŷ can be used in place of
v in Algorithm Spectral-Rating, and it can be shown easily
that the fraction of errors only increases by O(ϵ′). Thus,
choosing ϵ′ = Θ(ϵc) for some constant c, the performance of
the algorithm remains essentially unchanged.

Now, because the difference between the top eigenvalues of
UU⊤ is large, the power method converges extremely fast: in
a constant number of iterations, i.e., independent of T ! This
implies that a good approximation to the top eigenvector
can be computed in linear time in the number of non-zero
entries of U . The following lemma makes this precise (proof
in Appendix B in full version); the probability of success
can be boosted to any desired level by repeating the power
iteration with different random starting vectors and finally
taking the one with the largest Rayleigh quotient with UU⊤.

Lemma 3.4. Let ϵ′ = Θ(ϵc) for some constant c. Let x be
a randomly chosen vector in {−1, 1}n. Let y = (UU⊤)kx,
Then for a large enough constant k, with probability at least
1/8, we have (v · ŷ) ≥ 1− ϵ′.

4. AN ONLINE ALGORITHM
In this section, we design an online version of the algo-

rithm in the previous section for estimating the quality of
each item, and provide bounds on its performance.
Algorithm Spectral-Rating can be thought of as a batch

algorithm: it generates estimated ratings given a batch of
data. Such a batch algorithm is not efficient enough to scale
to large data sets, where a lightweight algorithm that uses
some statistics computed from a reasonable batch of data to
predict ratings of new items as they arrive, in an online fash-
ion, is much preferable. We now present an online algorithm
based on Algorithm Spectral-Rating, which first estimates
the raters’ competencies ψi using the ratings on some large
number T of items, and then uses these estimated ψi and the
observed ratings uti to estimate qt for items t ≥ T +1. This
algorithm is more efficient when an item’s quality must be
estimated immediately upon arrival, since we can simply use
the precomputed ψ vector to output an estimate qt, rather
than re-computing an eigenvector of UU⊤ each time a new
item arrives (i.e., a new row is added to U).
It is well known that the optimal decision rule for esti-

mating qt, given the votes uti, is to use a weighted majority
rule with logarithmic weights:

Lemma 4.1 ([9, 7]). Given agents with probabilities ψi
of voting correctly, the decision rule that maximizes the prob-
ability of returning the correct outcome is weighted majority
with weights

wi =
1

2
log

(
ψi

1− ψi

)
.

Of course, we do not know the ψi exactly but only have an
estimate of the ψi from Spectral-Rating; we will use this
approximate estimate of the ψi’s as input to the weighted
majority calculation.
The algorithm for estimating the ψi’s is as follows:

Algorithm Estimate-ψ.

1. Run Algorithm Spectral-Rating to get the vector q′.

2. For each user i, output the estimate

ψ′
i =

1

2

(
1

T
(q′ · ui) + 1

)
.

The prediction algorithm is essentially weighted majority
with the estimated ψi. A small twist is a clipping of esti-
mated ψi to the range [α, 1− α] for some α = O(1/

√
T) to

make the algorithm stable (note that the logarithmic weights
tend to infinity at 0 or 1) and allow an error analysis.

Algorithm Predict

1. Run Algorithm Estimate-ψ to obtain ψ′
i and

set ψ′′
i = min{max{ψ′

i, α}, 1 − α}, where α =

2
√

1
T
log(4n

η
).

2. Compute wi =
1
2
log(

ψ′′
i

1−ψ′′
i
).

3. When item t ≥ T + 1 arrives, output the estimate
of its quality q′t = sgn

(∑
i wiut,i

)
.

4.1 Analysis
Since the algorithms are based on Algorithm Spectral-

Rating, we assume throughout this section that the con-
ditions for Theorem 3.1 hold, i.e., T > 2

γ2
log(4/η) and

n
log(n)

> 128
cκ̄2 , so that with probability at least 1 − η,

the error rate of Algorithm Spectral-Rating is bounded by

ϵ = 8
κ̄

√
log(n) log(8/η)

cnT
.

We first analyze the quality of approximation to the ψi’s
achieved by Algorithm Estimate-ψ:

Theorem 4.1. With probability at least 1 − η, we have
for all i,

|ψ′′
i − ψi| ≤ α.

Proof. First, note that E[qiuti] = 2ψi − 1. By the Ho-
effding bounds, we have

Pr

[∣∣∣∣∣ 1T
T∑
t=1

qtuti − (2ψi − 1)

∣∣∣∣∣ > ϵ′
]
< η/2n,

where ϵ′ =
√

1
T
log(4n/η). Next, by Theorem 3.1, we have

Pr[|{t : qt ̸= q′t}| > ϵT] < η/2,

where ϵ = 8
κ̄

√
log(n) log(8/η)

cnT
. This implies that with proba-

bility at least 1− η/2,∣∣∣∣∣ 2T
T∑
t=1

qtuti −
1

T

T∑
t=1

q′tuti

∣∣∣∣∣ < 2ϵ,

since |uti| = 1. Applying a union bound over all i, we get
that with probability at least 1− η, for all i, we have∣∣∣∣∣ 1T

T∑
t=1

qtuti − (2ψi − 1)

∣∣∣∣∣ < 2ϵ+ ϵ′ < 4ϵ′,

using ϵ ≤ 2ϵ′ since we assumed that n
log(n)

≥ 128
cκ̄2 . This

implies that ∣∣ψ′
i − ψi

∣∣ < 2ϵ′ = α.

The clipping of ψ′
i to the range [α, 1 − α] to produce ψ′′

i

maintains |ψ′′
i − ψi| ≤ α.

We can now give bounds on the error rate of Algorithm
Predict. This is expressed as a bound on the probability
that an error is made on item qT+1. Naturally, this bound
also holds for any subsequent item t > T + 1. The bound
shows that as long as T is large enough so that α≪ κ̄ (note

that α = O(
√

log(n)/T)), the probability of making an error
drops exponentially with n.

Theorem 4.2. Assume that the assertion of Theorem 4.1
holds, i.e. for all i, we have |ψ′′

i − ψ| ≤ α. Assume further
that T is large enough so that α ≤ 0.05. Then

Pr[q′T+1 ̸= qT+1] < exp(−0.5(κ̄− 24α)n).

Proof. Without loss of generality, assume that qT+1 =
1. Algorithm Predict makes an error if

∑
i wiuT+1,i < 0.

Consider the function exp(−
∑
i wiuT+1,i). This is always

non-negative, and at least 1 whenever Algorithm Predict

makes an error. Hence, we have

Pr[q′T+1 ̸= qT+1] = E[1∑
i wiuT+1,i<0]

≤ E[exp(−
∑
i

wiuT+1,i)]

=
∏
i

E[exp(−wiuT+1,i)] (by independence of uT+1,i)

=
∏
i

(ψi exp(−wi) + (1− ψi) exp(wi))

=
∏
i

(
ψi ·

√
1− ψ′′

i

ψ′′
i

+ (1− ψi) ·

√
ψ′′

1− ψ′′
i

)
.

In Lemma 4.2 below, we bound the term in the product
above by exp(−0.5(2ψi−1)2+12α). Plugging in this bound,
we get that

Pr[q′T+1 ̸= qT+1] ≤ exp(−0.5(κ̄− 24α)n).

Lemma 4.2. If α ≤ 0.05, the following bound holds:(
ψi ·

√
1− ψ′′

i

ψ′′
i

+ (1− ψi) ·

√
ψ′′

1− ψ′′
i

)
≤ exp(−0.5(2ψi − 1)2 + 12α).

The proof of this lemma is a technical calculation, and is
deferred to Appendix B in the full version of the paper.

5. MANIPULATION
Finally, we address the issue of manipulation. We consider

three kinds of agents: (i) agents who choose their value of ψi
strategically to most degrade the performance of the algo-
rithm; (ii) agents who deviate from the model and rate each
contribution adversarially to most degrade the performance
of the algorithm, i.e., such agents’ ratings need not be drawn
according to a distribution given by ψ for any value of ψ,
and (iii) agents who only want to influence the system’s esti-
mate of the quality of a single item — for instance, a group
of agents might want to influence the outcome for a particu-
lar contribution either positively or negatively, but still rate
other contributions accurately to the extent given by their
ψi (either out of benevolence, or to maximize their ‘trust’
prior to manipulation). For all three cases, we analyze the
robustness of the algorithm to manipulation, and quantify
how the performance of the algorithm degrades with the
number of manipulating agents.
Stochastic Manipulation. This first case, where agents

continue to rate according to the model, but choose ψ to de-
grade the algorithm’s performance, is easy. Recall that the
performance of the algorithm depends on the competence
of each agent in a simple way: the error rate ϵ is inversely
proportional to the average competence κ̄, i.e., the smaller
κ̄, the larger the error. In fact, since this is the only term
containing ψi in the expression for ϵ, a malicious agent who
wants to attack the system by adversarially choosing ψi
will do the most harm by choosing ψi = 1/2, i.e., by simply
randomly voting items good or bad. In particular, this
algorithm is robust to agents who intentionally rate every
(or most) items the opposite of its actual quality, which
corresponds to ψi close to zero: such agents in fact are quite
useful to the algorithm since the algorithm can essentially

invert their judgment. The performance bound follows by
simply setting ψ = 1/2 for each manipulator in Theorem 3.1.

Adversarially choosing uj. We now consider a different
kind of malicious attack, where a malicious agent does not
behave according to a probability distribution as postulated
in the model at all, but chooses all her ratings adversarially
to most degrade the performance of the algorithm. If there
is more than one such agent, we will allow for the fact that
these agents might collude, i.e., the set of ratings from all
these agents could be adversarially chosen.

Suppose there are b such bad agents, and the remaining
ng = n − b agents rate stochastically. That is, the n − b
columns in U corresponding to these ‘good’ (though possibly
not very competent) agents are stochastically generated, but
the b columns corresponding to the bad agents are arbitrary
vectors in {−1, 1}T . In the following, all probability and
expectation calculations are over the randomness of the good
agents.

The bound below shows that the fraction of errors is es-
sentially what can be obtained by applying Theorem 3.1 to
the ng good agents, plus an additional b

κ̄gng
term. Thus, if

b≪ n, and κ̄g =
κg

ng
> 0, then this additional term becomes

negligible. This means that Algorithm Spectral-Rating can
tolerate a small constant fraction of malicious agents, even
if these agents are colluding.

Lemma 5.1. Under the assumptions of Theorem 3.1, we
have that with probability 1− η,

1

T
|{t : qt ̸= q′t}| ≤

8

κ̄g

√
log(ng) log(2/η)

cngT
+

b

κ̄gng
.

Proof. Let κg =
∑
i/∈B(2ψi − 1)2 be the total compe-

tence of the good agents. Then, a calculation similar to the
previous one shows that

E[UU⊤] = κgqq
⊤ + (ng − κg)I +

∑
j∈B

uju
⊤
j .

Next, the matrix Chernoff-bound calculations as in (2) lead
to the following bound:

Pr
[
∥UU⊤ − E[UU⊤]∥2 > ngδ

]
≤ 2 exp

(
−cngδ2

log(ng)T

)
. (9)

Note that this uses the fact that
∑
j∈B uju

⊤
j term cancels

out in UU⊤ − E[UU⊤]. For δ =
√

log(ng)T log(2/η)

cng
, the RHS

becomes smaller than η.
Now note that

∥E[UU⊤]− (κgqq
⊤ + (ng − κg)I)∥2 = ∥

∑
j∈B

uju
⊤
j ∥2 ≤ bT.

Hence, with probability at least 1− η, we have

∥UU⊤ − (κgqq
⊤ + (ng − κg)I)∥2 ≤ ngδ + bT.

Again as before, by Lemma A.1, we get that

(q̂ · v)2 ≥ 1− λ′
2 + 3ngδ + 3bT

λ′
1

,

where λ′
1 = κgT + (ng − κg), and λ

′
2 = (ng − κg). For our

choice of parameters, we get that (q̂ · v)2 ≥ 1− ϵ/2, where

ϵ <
8

κ̄g

√
log(ng) log(2/η)

cngT
+

b

κ̄gng
,

where κ̄g =
κg

ng
. Reasoning as before, ϵ gives a bound on the

fraction of errors.

Choosing utj to influence outcome for a particular
item t. Now we consider what happens if some set B of
b agents are interested in manipulating the outcome for a
single item, although not necessarily in bringing down the
entire moderation system as a whole. This is quite a realistic
possibility, since a spammer with a particular agenda might
be interested only in making sure that a post on that agenda
is not accurately identified as spam6: in fact, it is to these
agents’ benefit to rate other items accurately to acquire as
much of the system’s trust as possible before attempting to
manipulate the outcome for their chosen item.
To analyze this kind of manipulation, we will use the on-

line version of our algorithm from §4, which allows us to
address the error for a specific contribution rather than
an average error over contributions. We will show that
as long as b is small compared to κg, the total compe-
tence of the good agents, the probability of making an er-
ror still remains exponentially small. In the following the-
orem, ng = n − b denotes the number of good agents, and
β = 1

2
log(1−γ

γ
) is an upper bound on the magnitude of

the weights wi produced by algorithm Estimate-ψ, where
γ = max{α,mini{1−ψi},mini{ψi}}. If every ψi is bounded
away from 0 or 1, a reasonable assumption, β will be a mod-
erately sized constant, because of the logarithm.
The bound below is similar in spirit to the bound of

Lemma 5.1. It says that the error rate is what one might
expect by applying Theorem 4.2, times an additional factor
of exp(βb). Thus, if b≪ n, and κ̄g > 0, then the additional
factor becomes negligible. The implication is that Algorithm
Predict is resistant to manipulation by a small constant frac-
tion of malicious agents, even if they are colluding.

Lemma 5.2. Under the assumptions of Theorem 4.2, we
have

Pr[q′T+1 ̸= qT+1] < exp(−0.5(κ̄g − 24α− β b
ng

)ng).

Proof. Assume as before that qT+1 = 1. The bad agents
can do the most damage by choosing all their own ratings
to be −1. We now want to bound the probability that the
weighted majority rule makes an error, i.e.

∑
i wiui,T+1 < 0.

This is equivalent to∑
i/∈B

wiui,T+1 <
∑
i∈B

wi.

The RHS above is bounded by βb. We now bound the prob-
ability that

∑
i/∈B wiui,T+1 < βb. For this, we use the same

technique as before:

Pr[
∑
i/∈B

wiui,T+1 < βb] = E[1∑
i/∈B wiui,T+1<βb]

≤ E[exp(βb−
∑
i/∈Bwiui,T+1)]

= exp(βb)
∏
i/∈B

E[exp(−wiui,T+1)].

The rest of the analysis is the same as before, and results in
specified bound on the error rate.

6This comment on a YouTube video clearly falls in this cat-
egory: “hey everyone we have a group on facebook but now
we have a youtube channel so? go to our channel and sub-
scribe to us!”; it actually had 10 thumbs-up votes.

6. SIMULATIONS
The performance bounds proved in the previous sections

guarantee that the fraction of errors goes to 0 as n and T
grow. However, the bounds given are worst-case and might
yield needlessly pessimistic requirements on how large n and
T need to be to obtain small error. In this section, we numer-
ically evaluate the performance of our algorithms for small
values of n and T , and show that the accuracy of the al-
gorithm is high even for these regimes. Note that there are
no computational difficulties associated with handling larger
numbers of observations7; here, we only want to demonstrate
that a very large amount of data is not essential for accuracy.

We imagine two scenarios, and plot how the error rate of
the algorithm changes with increasing κ̄, the average com-
petence of the raters.:

1. A modestly sized website with a relatively small num-
ber of users and a modest number of contributions,
with modest rating probabilities pi. Specifically, we
set n = 100 users, T = 1000 contributions, and the
pi’s are randomly drawn uniformly from [0, 0.3]. This
corresponds to collecting an average of 150 thumbs-
up/down ratings by users, a reasonable number.

2. A large website with a large number of users and con-
tributions, but smaller pi. Here we set n = 1000 users,
T = 5000 contributions, and the pi’s are randomly
drawn uniformly from [0, 0.1].

Competencies for the raters are randomly drawn from the
normal distribution with mean 0.5 + t and variance 0.01
clipped to the [0, 1] interval. Here t is a parameter that is
changed to obtain different values of κ̄.

While we ran both Algorithm Spectral-Rating and Algo-
rithms Estimate+Predict, for clarity we only show results
for Algorithm Spectral-Rating since the performance of Al-
gorithms Estimate+Predict was nearly identical. The error
rate depicted in the graph is the 90% quantile obtained from
100 runs of the algorithm. We use the 90% quantile instead
of the mean because there are sometimes a few outliers with
large error causing small spikes in the mean (note that our
bounds also only hold with probability 1−η); the 90% quan-
tile curve is smoother and shows the trend of the error rate
quite clearly, while still being a reasonable indicator of the
performance.

The plots clearly demonstrate the effectiveness of the al-
gorithm for much smaller values of T than required by the
theoretical bounds. The performance improves rapidly as κ̄
increases: when κ̄ is zero, essentially all agents are rating
randomly, and so the algorithm cannot do very much bet-
ter than random guessing. However the error rates fall very
rapidly to values in the range of a few percent even for very
small values of κ̄, and in the case of Scenario 2, the error
rate improves even faster, falling to 0 for κ̄ = 0.3.

7. DISCUSSION
In this paper, we introduced a model for the problem

of moderating user-generated content using crowdsourced
ratings of unknown reliability, and presented efficient algo-
rithms to accurately identify abusive content. There are

7The online algorithm’s performance is almost identical to
that of the batch algorithm for the same parameters, so even
larger amounts of data can be used to improve accuracy
without sacrificing speed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Average competence of 100 users

90
%

 q
ua

nt
ile

 o
f e

rr
or

 r
at

e
w

ith
 1

00
0

co
nt

rib
ut

io
ns

Figure 1: Average comptence v.s. 90% quantile of
error rate, in Scenario 1: 100 users, 1000 contribu-
tions, pi’s drawn uniformly from [0, 0.3].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Average competence of 1000 users

90
%

 q
ua

nt
ile

 o
f e

rr
or

 r
at

e
w

ith
 5

00
0

co
nt

rib
ut

io
ns

Figure 2: Average comptence v.s. 90% quantile of
error rate, in scenario 2: 1000 users, 5000 contribu-
tions, pi’s drawn uniformly from [0, 0.1].

a number of interesting directions for further work. First,
while we focused on identifying unambiguously bad content,
user ratings can also be used to infer the relative qualities
of non-abusive contributions: not all non-spam UGC is of
the same quality, and displaying better quality contributions
more prominently improves user experience. How accurately
can an algorithm infer the true rankings of the items accord-
ing to their qualities in the presence of inaccurate ratings,
and how sensitive is it to manipulation? For example, the
order in which restaurants appear in the Yelp rankings likely
strongly influences whether a user notices them or not; the
ranking is generated precisely on the basis of user ratings
that may not be accurate or honest. The model presented
in this paper might provide a first step towards addressing
this question.
Another interesting direction is robustness against manip-

ulation: how can we design algorithms that are optimized
against manipulation, to tolerate a larger number of mali-
cious agents, and what are the trade-offs? Finally, we note
that the most general model for UGC would involve both
strategic contributors and strategic raters. The question of
how to design a mechanism for this setting that both in-
centivizes contributors to produce high quality and raters

to rate honestly is a promising direction for future work,
potentially requiring insights from other fields to accurately
model incentives for all agents.

8. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering,
17(6):734–749, June 2005.

[2] Y. Azar, A. Fiat, A. R. Karlin, F. McSherry, and
J. Saia. Spectral analysis of data. In STOC, pages
619–626, 2001.

[3] R. Bhattacharjee and A. Goel. Algorithms and
incentives for robust ranking. In SODA, pages
425–433, 2007.

[4] V. Conitzer. Making decisions based on the preferences
of multiple agents. Commun. ACM, 53(3):84–94, 2010.

[5] E. Friedman, P. Resnick, and R. Sami.
Manipulation-resistant reputation systems.
Algorithmic Game Theory, 2007.

[6] A. Ghosh and R. P. McAfee. Incentivizing high-quality
user generated content. In Proc. WWW, 2011.

[7] B. Grofman and L. Shapley. Optimizing group
judgmental accuracy in the presence of
interdependencies. Public Choice, 43:329–343, 1984.

[8] P. G. Ipeirotis, F. Provost, and J. Wang. Quality
management on amazon mechanical turk. In Proc.
Workshop on Human Computation, 2010.

[9] S. Nitzan and J. Paroush. Optimal Decision Rules in
Uncertain Dichotomous Choice Situations.
International Economic Review, 23(2):289–297, June
1982.

[10] M. Rudelson and R. Vershynin. Sampling from large
matrices: An approach through geometric functional
analysis. J. ACM, 54(4), 2007.

[11] L. N. Trefethen and D. Bau. Numerical Linear
Algebra. SIAM, 1997.

[12] L. Trevisan. Computing eigenvectors.
http://lucatrevisan.wordpress.com/2011/01/29/cs359g-
lecture-7-computing-eigenvectors/.

[13] P. Welinder, S. Branson, S. Belongie, and P. Perona.
The multidimensional wisdom of crowds. In NIPS,
2010.

[14] P. Welinder and P. Perona. Online crowdsourcing:
Rating annotators and obtaining cost-effective labels.
In Computer Vision and Pattern Recognition
Workshop, 2010.

[15] J. Whitehill, P. Ruvolo, J. Bergsma, T. Wu, and
J. Movellan. Whose vote should count more: Optimal
integration of labels from labelers of unknown
expertise. In Advances in Neural Information
Processing Systems, 2009.

[16] H. Yu, M. Kaminsky, P. B. Gibbons, and A. D.
Flaxman. Sybilguard: Defending against sybil attacks
via social networks. IEEE/ACM Trans. Netw.,
16(3):576–589, 2008.

APPENDIX
A. LINEAR-ALGEBRAIC INEQUALITIES

Lemma A.1. Let A and B be symmetric, positive
semidefinite matrices such that ∥A − B∥2 ≤ δ. Let v1 and
w1 be the unit eigenvectors corresponding to the top eigen-
values of A and B respectively. Let λ1 and λ2 be the top two
eigenvalues of B. Then

(v1 · w1)
2 ≥ 1− λ2 + 3δ

λ1
.

Proof. Let µ1 and µ2 be the top two eigenvalues of A.
Lemma A.2 below implies that |µ1−λ1| ≤ δ and |µ2−λ2| ≤
δ. Let w1 = αv1 + x be a decomposition of w1 along v1
and its orthogonal complement, so that α = v1 · w1 and
∥x∥ =

√
1− α2 ≤ 1. Since ∥A−B∥ ≤ δ, we have

w⊤
1 Aw1 ≥ w⊤

1 Bw1 − δ = λ1 − δ.

On the other hand we have

w⊤
1 Aw1 = α2v⊤1 Av1 + x⊤Ax

≤ α2µ1 + µ2∥x∥2

≤ α2(λ1 + δ) + (λ2 + δ).

Putting the two inequalities together, we get that

α2 ≥ 1− λ2 + 3δ

λ1 + δ
≥ 1− λ2 + 3δ

λ1
.

as required.

Lemma A.2. Let A and B be T × T symmetric matrices
such that ∥A−B∥2 ≤ δ. Let µi and λi denote the ith largest
eigenvalues of A and B respectively, for i = 1, . . . , T . Then,
for all i, we have |µi − λi| ≤ δ.

Proof. Consider the subspace Wi spanned by the top i
eigenvectors of A and the subspace VT−i+1 spanned by the
bottom T − i + 1 eigenvectors of B. Since the sum of the
dimensions of these two subspaces is T+1, their intersection
has a non-zero unit vector v. By the Courant-Fischer min-
max theorem, we have

v⊤A⊤v ≥ µi, and v⊤Bv ≤ λ̄i,

since v ∈Wi and v ∈ V̄T−i+1 respectively. Since ∥A−B∥2 ≤
δ, we conclude that |µi − λi| ≤ δ.

B. OMITTED PROOFS
We restate and prove Theorem 3.2 now:

Theorem B.1. There is a constant c such that if T >
3

p1γ2
log(4/η) and n

log(n)
> 88p1

cS̄2 , then for any η ∈ (0, 1),

with probability at least 1− η, we have

1

T
|{t : qt ̸= q′t}| ≤

8

κ̄p

√
logn

cnT
log(4/η). (10)

The proof relies on the the following analogue of
Lemma 3.3:

Lemma B.1. If T > 3
p1γ2

log(4/η) and n
log(n)

> 88p1
cκ̄2 ,

then with probability at least 1− η/2, we have q̂ · (σv) ≥ 0.

Proof. The proof is on the same lines as the proof
of Lemma 3.3. The only difference is that we use Bern-
stein’s inequality instead of Hoeffding’s inequality to get
a tighter bound: for T independent random variables
X1,X2, . . . , XT ∈ {−1, 1}, for any δ > 0, we have

Pr

[
T∑
t=1

Xt − E

[
T∑
t=1

Xt

]
≤ δ

]
≤ exp

(
−δ2/2∑T

t=1 V ar(Xt) + δ/3

)
.

In our case, setting Xt = u1tqt, we have E[
∑T
t=1Xt] = E[u1 ·

q] = 2p1γT . Further, V ar(Xt) ≤ E[X2
t] = p1. Setting

δ = p1γT , we get that

Pr[u1 · q < p1γT] < exp(−p1γ2T/3).

The rest of the analysis is as before.

We restate and prove Lemma 3.4:

Lemma B.2. Let ϵ′ = Θ(ϵc) for some constant c. Let x
be a randomly chosen vector in {−1, 1}n. Let y = (UU⊤)kx,
Then for a large enough constant k, with probability at least
1/8, we have (v · ŷ) ≥ 1− ϵ′.

Proof. Let the eigenvalues of UU⊤, in decreasing order,
be µ1, µ2, . . . , µT , and let v1 = v, v2, . . . , vT be the corre-
sponding unit eigenvectors. Express x in terms of the eigen-
vectors as x =

∑
t αtvt. Then y = (UU⊤)x =

∑
t αtµ

k
t vt,

and so

(v · ŷ)2 =
α2
1µ
k
1∑

t α
2
tµ
k
t

=
1

1 +
∑
t>1

α2
t

α2
1
(µt
µ1

)2k
≥ 1

1 + T
α2
1
(µ2
µ1

)2k
.

Here we use the fact that
∑
t α

2
t = ∥x∥2 = T . Now, with

probability at least 1/8 [12], we have α2
1 ≥ 1/4. Further-

more, by (3) we have ∥UU⊤ − E[UU⊤∥ ≤ nδ. Applying
Lemma A.2 with A = UU⊤ and B = E[UU⊤], we get that
µ2 ≤ λ2 + nδ, and µ1 ≥ λ1 − nδ, where recall that λ1 and
λ2 are the top eigenvalues of E[UU⊤]. This implies that

µ2

µ1
≤ λ2 + nδ

λ1 − nδ
= O(ϵ).

Hence, with probability at least 1/8, we have

(v · ŷ)2 ≥ 1

1 + 4T ·O(ϵ)k
≥ 1− ϵ′

when k = Θ(log(T/ϵ
′)

log(1/ϵ)
) = Θ(1), since ϵ = O(

√
1/T).

We restate and prove Lemma 4.2 now:

Lemma B.3. If α ≤ 0.05, the following bound holds:(
ψi ·

√
1− ψ′′

i

ψ′′
i

+ (1− ψi) ·

√
ψ′′

1− ψ′′
i

)
≤ exp(−0.5(2ψi − 1)2 + 12α).

Proof. Without loss of generality we may assume that
ψ′′ ≤ ψ; the other case is handled analogously with 1 − ψ
and 1−ψ′′ playing the roles of ψ and ψ′′ respectively. Next,
note that

|(2ψi − 1)2 − (2ψ′′
i − 1)2| = |4(ψi − ψ′′

i)(ψi + ψ′′
i − 1)| ≤ 4α.

(11)
We prove the bound of the lemma via two cases on ψi:
Case 1: ψi ≥ 0.15. Since ψ′′

i ≥ ψi − α, we can bound

ψi ≤ (1 + α
ψ′′
i
)ψ′′
i ≤ (1 + α

ψi−α
)ψ′′
i ≤ (1 + 10α)ψ′′

i

since ψi − α ≥ 0.1 because α ≤ 0.05. So

ψi ·

√
1− ψ′′

i

ψ′′
i

≤ (1 + 48α) ·
√
ψ′′(1− ψ′′)

≤ 0.5 exp(−(2ψ′′
i − 1)2 + 10α)

≤ 0.5 exp(−(2ψi − 1)2 + 12α). (12)

The second inequality above uses the fact that√
x(1− x) ≤ 0.5 exp(−0.5(2x− 1)2)

for all x ∈ [0, 1], and the third inequality uses (11). Further,
since ψ′′

i ≤ ψi we have

(1− ψi) ·

√
ψ′′

1− ψ′′
i

≤ (1− ψi) ·

√
ψ

1− ψi

=
√
ψ(1− ψ)

≤ 0.5 exp(−0.5(2ψi − 1)2), (13)

using the inequality
√
x(1− x) ≤ 0.5 exp(−0.5(2x − 1)2)

again. Putting (12) and (13) together, we get the desired
bound in the statement of the lemma.
Case 2: ψ < 0.15. Let r = (ψi

1−ψi
)/(

ψ′′
i

1−ψ′′
i
) =

ψ(1−ψ′′
i)

ψ′′
i (1−ψi)

.

Since ψ′′
i ≤ ψi, we have r ≥ 1.

We now wish to upper bound r. The ratio ψi/ψ
′′
i ≤ 2,

since ψ′′
i ≥ α and ψi ≤ ψ′′

i +α. The ratio (1−ψ′′
i)/(1−ψi) ≤

1+ α
0.85

since 1−ψi ≥ 0.85 and 1−ψ′′
i ≤ 1−ψi+α. Overall,

we get that r ≤ 2(1 + α
0.85

) ≤ 2.12 since α ≤ 0.05.
We now have

ψi ·

√
1− ψ′′

i

ψ′′ + (1− ψi) ·

√
ψ′′

1− ψ′′
i

= (1/
√
r +

√
r)
√
ψ(1− ψ)

≤ 2.15
√
ψ(1− ψ)

≤ exp(−0.5(2ψi − 1)2).

Here, the second inequality uses the fact that for r ∈
[1, 2.12], we have

(1/
√
r +

√
r) ≤ (1/

√
2.12 +

√
2.12) ≤ 2.15.

The third inequality is based on the bound

2.15
√
x(1− x) ≤ exp(−0.5(2x− 1)2)

which is valid when x < 0.15.

