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Abstract

Asymmetries in the abilities of contestants that engage in a pro-
tracted competition appear to be more common than symmetric com-
petitions. Why doesn’t the weaker player concede immediately? This
paper introduces a model based on the idea that a “war” can only be
won by winning a series of battles. There are two kinds of stationary
equilibria, one with fighting to completion, the other with a cessation
of hostilities. As a player gets closer to losing, that player’s probabil-
ity of winning battles falls, social welfare rises, and the levels of effort
of both players rise. The theory is applied to a variety of conflicts,
including wars and attempts at market domination.
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1 Introduction

Asymmetries in the abilities of contestants that engage in a protracted com-
petition appear to be more common than symmetric competitions. Take
for instance the “browser wars” between the giant Microsoft and a fledgling
Netscape in the 1990s or similarly the involvement of the US in Vietnam,
the French in Vietnam and Algeria (see, e.g. Paret [1964], and Mack [1975])
or the British with the IRA during the Irish war of independence (see Kautt
[1999]). In each of these there is a player (Microsoft, the US, French or the
British) with a relatively large budget and a high (political) cost of a pro-
tracted war taking on weaker opponents.1 The asymmetry is at times very
acute, as exemplified by the recent travails of Percy Schmeiser against the
agricultural giant Monsanto2. The present conflicts in Iraq and Afghanistan,
as well as the earlier Afghanistan conflicts with the USSR and Britain, all
have the same feature of a large foreign power fighting in an economically
small region.

Who should win a war of attrition between very different players? Why
doesn’t the weaker player concede immediately? The examples provided
above have the nature of a war of attrition, in that two sides are competing
with each other for a prize that can only accrue to one of them. However,
standard models fail to accommodate these examples well. First, all of
the contests were decidedly asymmetric – typically with a large player and
a smaller player. Second, the competitions involved one firm or country
fighting for its existence against a player who survives in the event of a loss.
Typically the latter player is the stronger player in resources. One might
view the smaller player as budget constrained, but that doesn’t seem to be
a good description of Vietnam, Algeria and the US Civil War, where the
budget-constrained small player somehow kept fighting. Third, the level of
effort is endogenous – firms or nations can expend more or less effort at
each point in time. The endogenous effort choice is important because even
a small player can exert a lot of effort in the near term, perhaps inducing
the larger player to exit.

This paper introduces a model capturing all three of these salient features
1 See, for example, the statement by Gary Gallagher quoted in Zebrowski [1999] for an

explanation on how the US Civil War and US/Vietnam War are analogous to the browser
wars.

2Percy Schmeiser, an independent framer, had engaged in a protracted legal bat-
tle with agrichemical giant Monsanto between 1999 and 2004, with important implica-
tions for the farmers’ rights and regulation of transgenic crops. The Canadian Supreme
Court ruling which, it is generally regarded, is in favor of Monsanto can be found at
http://scc.lexum.umontreal.ca/en/2004/2004scc34/2004scc34.html.
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of real world competitions, based on the idea that a “war” can only be won
by winning a series of battles. Victory in each battle is (endogenously)
random and sways the outcome further away from the competitor’s desired
position. With discounting the more distant prize becomes less desirable and
increases the incentive to remain in the status quo – making it worthwhile
to the weaker player to engage in the first battle. We formalize this as a
discrete war of attrition.

One can think of the game as a football or soccer match along a line
segment; a tug of war is the best analogy. Each player has an end or goal,
between which there are a series of nodes at which a battle can occur. The
object is push the battle ”front” or point of conflict to the other player’s
end, just as the object in soccer is to get the ball into the other team’s goal.
The first to do so wins, with the other losing. At most one step can be
taken in each period; each step may be thought of as a battle. The value of
winning is positive, exceeding the value of no resolution (set to zero), and
the value of losing is assumed negative.

The main results are (i) that effort tends to rise as either player gets
close to winning, (ii) the probability that a player advances rises the closer
to winning the player is, (iii) social welfare is u-shaped, with higher utility
near the goals. At any point, at least one of the players has negative utility.
Moreover, in the central area, the utility of both players may be negative.
This does not mean players would unilaterally exit, however, since the neg-
ative utility exceeds the utility of an immediate loss. It is possible for the
outcome to be a draw, with a weakly stable interior solution. In this case,
neither player wins nor loses.

Due perhaps to the origin of the formal theory of the war of attrition
in evolutionary biology (Smith [1974]) and the desire for simplicity, most
analyses focus on symmetric games. In all of these analyses, the effort choice
is exogenous: firms either stay in, or exit. The papers in this classical vein
include Fudenberg and Tirole [1984], Fudenberg and Tirole [1986], Hillman
and Riley [1989], Kovenock et al. [1996], Kapur [1995], Che and Gale [1996],
Krishna and Morgan [1997] and Bulow and Klemperer [1999]3 among many
others.

3In an important paper, Jeremy Bulow and Paul Klemperer, 1999, distinguish between
the IO version and the standards game of wars of attrition. In the IO version, exit stops
one’s costs from accruing, while in the standards game, firms continue to incur costs until
the penultimate player exits and the game ends. These two are identical in the case of
two firms. Moreover, if there is only one winner, in the IO version of the game, Bulow
and Klemperer prove that all but two firms drop out immediately, even when the firms
are distinguished by privately known costs or values.
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This paper focuses on possibly asymmetric contests with an endogenous
effort choice. In the next section, a model of the war of attrition with en-
dogenous effort is introduced. Unlike the standard models, with endogenous
effort, it is necessary to keep track of the state of the system over time, be-
cause the player exerting more effort is gaining an advantage over its rival
that persists. There are only a few papers that we are aware of which con-
sider the case of endogenous effort.

Harris and Vickers [1987] was the first to study the tug of war and thus
endogenize effort. The present paper builds on the analysis of McAfee [2000],
the next work to study the tug of war. With respect to Harris and Vickers
in 1987, there are three significant differences. Harris and Vickers use what
Dixit [1987] calls a contest for the subgame, while an all-pay auction is used
here.4 Second, discounting is permitted in the present analysis, and it turns
out that discounting is very important, in that the limit of the solution, as
players’ common discount factors converge to unity, is degenerate. These
differences in modeling permit the third major difference in the analysis: a
closed form solution for the stationary equilibrium, and consequently greater
insight into the comparative statics of the analysis, is available with the
present model.

In their analysis, Harris and Vickers emphasize the combination of strate-
gic interaction with uncertainty. Their stage game features uncertainty in
the outcome for any given levels of effort by the players. In contrast, the
present study has a deterministic outcome at the stage game; the player
supplying greater effort wins. Uncertainty is endogenous: the deterministic
stage game outcome induces randomization in the actions of the players.
Depending on the application, either model might be more appropriate.

In a recent paper, Konrad and Kovenock [2005] also study the tug of
war using a first price all pay auction as the stage game. There are at
least two significant differences. In their model identical effort still results
in movement, with a coin toss. Here, the node has to be re-contested. Next,
they identify a loss with the status quo. Here, the status-quo is strictly
preferred to a loss but is less preferred to a win. Again, the application
would determine which model is most appropriate. But more importantly,
the differences do matter for equilibrium behavior. For instance, we exhibit
“draw equilibria” where there is a region neither player finds it attractive to
exert any effort. We expand on this comparison in Section 3.3.

Horner [2004] also analyzes a model in which effort choices are endoge-
4In addition to Dixit [1987], Grossman [1991] Garfinkel [1990] and Skaperdas [1992]

provided contest models to analyze some issues considered here.
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Figure 1: The playing field

nous and taken repeatedly. The structure of the model is more descriptive of
a race rather than a tug of war. As such there is no immediate comparison
of the results.

Section 2 presents the model and the main characterization. Section 3
examines comparitive statics, special cases and revisits applications. It also
discusses possible extensions. Section 4 concludes. Most proofs are in the
Appendix.

2 The Continuing War of Attrition

Two agents, named Left and Right , play a game over a set of states or nodes,
indexed by n = 0, 1, . . . , N . The game space is illustrated in Figure 1.

The game ends when either extreme node 0 or N is reached. Payoffs
for the players are u0 and v0, for Left and Right respectively, when node 0
is reached, and uN , vN if node N is reached. Reaching the right node N is a
win for Left , and a loss for Right . Conversely, reaching the node 0 is a win
for Right . To formalize the notion of winning, assume:

v0 > 0 > u0 and vN < 0 < uN (1)

There will be discounting and a possibility that the game never ends, result-
ing in a zero payoff. Thus, (1) requires that winning is preferred to delay,
and delay preferred to losing. While such an assumption was not required by
the standard theories, which do not involve discounting, it seems reasonable
that, faced with an inevitable loss, players would prefer to delay and hence
discount the loss.

At each node, the players play a first-price war of attrition by choosing
non-negative effort levels. Denote by x and y the effort levels of Left and
Right . The state transition is given by:

n →


n if x = y
n + 1 if x > y
n− 1 if x < y

Thus, when Left exerts more effort, the node is advanced, and conversely
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when Right exerts more effort. The cost of x and y are set at x and y.5 If
the game ends at time T at node n ∈ {0, N}, Left ’s payoff will be of the
form

δT un −
T∑

t=0

δtxt

Right ’s payoff is analogous. The above game is the continuing war of attri-
tion (CWA).

A strategy for a player requires a specification of an effort choice after
every history, which can be arbitrarily long. However, with finitely many
nodes, there will typically be a stationary equilibrium where each player’s
choice of effort depends only on the current state – equilibria that the liter-
ature labels Markov-Perfect. Such stationary equilibria seem natural in this
context and the analysis will focus on them6. Furthermore if, in an equilib-
rium, neither player were to exert a positive effort at some node, given the
transition function, play remains at that node forever. This prompts the
following further classification of equilibria.

Definition 1 (Draw & No-Draw Equilibrium). An equilibrium of the CWA
is said to be a draw-equilibrium if neither player exerts a positive effort at
some node. Otherwise, it is said to be a no-draw equilibrium.

Our analysis will show when these different types of equilibria occur and
also offer explicit closed form solutions. The analysis begins with the stage
game. Suppose Left and Right use the distributional strategies Fn and Gn

at a node n. Denote by un and vn the two players’ continuation values at
node n. Also, let pn (x) and p′n (x) respectively denote the probability of a
win and a tie if Left bids x when Right bids according to Gn. Let qn (y) and
q′n (y) denote similar probabilities for Right if she bids y. Then the following

5 If costs are linear, setting marginal costs at unity is without loss of generality, because
u0 and uN or v0 and vN can be scaled to produce an equivalent optimization problem
with unit marginal cost. The equilibrium analysis holds for convex costs, provided each
cost function is a scalar multiple of the other, so that rescaling produces identical costs.
It is potentially important that a tie leaves the state unchanged, rather than randomly
selecting another state.

6There may be other equilibria. In particular, there are situations where both players
prefer a draw with zero effort to continued war. Moreover, a draw could be supported
with a threat of a return to hostilities (positive effort) in the event that a player de-
fects. However, this turns out to be a stationary equilibrium without resorting to history
dependence.
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must hold for all x, y in the support of Fn and Gn respectively:

un = δpn (x) un+1 + δp′n (x) un + δ
(
1− pn (x)− p′n (x)

)
un−1 − x

vn = δqn (y) vn−1 + δq′n (y) vn + δ
(
1− qn (y)− q′n (y)

)
vn+1 − y

The above may be expressed more succinctly as

un − δun−1 = pn (x) αn + p′n (x) α′n − x

vn − δvn+1 = qn (y) βn + q′n (y) β′n − y

where αn = δ (un+1 − un−1) and α′n = δ (un − un−1) and βn = δ (vn−1 − vn+1)
and β′n = δ (vn − vn+1). αn may be thought of as Left ’s (net) value of win-
ning the node n when Right exerts a positive effort. α′n is the value of a tie.
βn, β′n are similar entities for Right . Occasionally, we will refer to the LHS
of the above equations as the net payoff of a player at that node.

The behavioral strategies at any stage in an equilibrium could occur
both as mixtures or as pure strategies. When a stage equilibrium is in
mixed strategies, one might expect it to correspond to the equilibrium of a
standard first price war of attrition where the two players’ win utilities are
αn and βn. There is however a caveat– the payoffs from a tie are α′n and
β′n, unlike in the standard case where one player is chosen at random to be
the winner if a tie occurs. As these equilibria typically involve a mass point
for at least one player, taking care of the tie payoffs becomes important.
The first lemma below establishes a monotonicity of payoffs which turns out
to be sufficient for ensuring that behavior at each stage does seem like an
equilibrium of a first price war of attrition.

Lemma 1. For all n, un ≤ un+1 and vn ≤ vn−1, with the corresponding
inequality being strict whenever un 6= 0 or vn 6= 0.

The above Lemma ensures that both players (weakly) prefer winning a
node to tying, i.e. αn ≥ α′n and βn ≥ β′n. Proposition 4, to be found in the
Appendix, shows that, just as in the standard first price war of attrition,
the mixed strategy equilibrium yields a zero net payoff to the lower valued
player while the higher valued player gets the entire rent. Consequently, we
have the following result.

Lemma 2. The following is true of an equilibrium at any node n:

1. It is a pure strategy equilibrium if and only if un = un+1 = 0, vn−1 =
vn = 0.
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2. It is a mixed strategy equilibrium if and only if αn > 0, βn > 0 and

un − δun−1 = αn −min {αn, βn} (2)
vn − δvn+1 = βn −min {αn, βn} (3)

From Lemma 1, we know that vn is a decreasing sequence that is positive
at n = 0 and negative at n = N . Therefore, there must be a region at the
left end where vn > 0 and consequently Right is the player with a relatively
higher value, i.e. αn < βn. Otherwise, (3) cannot hold. Accordingly, define
L to be the maximal node7 such that for all n ≤ L, Right has a higher value
of winning n. That is, αn < βn for all n ≤ L and βL+1 ≤ αL+1. Analogous
to L, one can define a minimal node, say R, such that everywhere to its
right, Left has a (weakly8) higher value of winning a node, i.e. αn ≥ βn for
all n ≥ R and βR−1 > αR−1.

Whether Left values winning a node more than Right translates to a
comparison of the sum of players’ utilities at adjacent nodes. That is, letting
sn = un + vn, αn < βn ⇔ sn−1 > sn+1. L and R are therefore described by
the following inequalities:

sn−1 > sn+1 ∀n ≤ L and sL ≤ sL+2, (4)
sn−1 ≤ sn+1 ∀n ≥ R and sR−2 > sR, (5)

Further, a direct application of Part 2 of Lemma 2 gives us the following
equalities:

un = δun−1 vn = δsn−1 − δun+1 n ≤ L (6)
vn = δvn+1 un = δsn+1 − δvn−1 n ≥ R (7)

vL+1 = δvL+2 uL+1 = δsL+2 − δvL (8)
uR−1 = δuR−2 vR−1 = δsR−2 − δuR (9)

If R ≤ L + 3, the above system of linear equations can be solved to
obtain a candidate solution for vn, un for all n = 1, . . . , N −1. Whether this
could actually constitute an equilibrium is a matter of checking whether
(4)-(5) can be satisfied. On the other hand if R > L + 3 these equations
are inadequate. Moreover the identity of the player with a relatively higher
value of winning a node in [L + 2, R− 2] may, in principle, switch back and

7Set the convention β0 > α0 so that L is well defined.
8We define R with weak inequalities αn ≤ βn merely to ensure that L < R by definition.
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forth several times between Left and Right . There may also be regions where
neither player exerts any effort. Such multiple possibilities seem daunting
at first. Fortunately, the next lemma removes much of this ambiguity.

Lemma 3. Suppose n is such that βn ≤ αn and βn+1 ≥ αn+1.

1. un ≤ vn and un+1 ≥ vn+1.

2. If βn−1 ≤ αn−1or βn+2 ≥ αn+2, correspondingly the equilibrium at n
or n + 1 is in pure strategies.

Lemma 3 has an important implication. Recall that αL < βL, αL+1 ≥
βL+1 and αR−1 < βR−1, αR ≥ βR. If there is distinct node between L + 1
and R − 1, a node with a pure strategy equilibrium must occur somewhere
between L + 1 and R − 1, which immediately leads to the following obser-
vation:

Corollary 1. In a no-draw equilibrium, either R = L + 1 or R = L + 3.

Thus, every equilibrium of the CWA divides the playing field into two
zones, one on the left in which Right has a relatively higher value to winning
a node while the opposite is true at the right end. In between, players may
either settle for a draw or, in case of R = L + 3, switch their identities
for being the player with the higher valuation. The foregoing observations
considerably simplify the possibilities and set the stage for a complete char-
acterization of all equilibria.

Indeed, for n ≤ L, un can be readily solved recursively using the expres-
sion given in (6) and then substituted into vn to give

un = un ≡ δnu0 for n ≤ L,

vn = vn ≡ δn
(
v0 + n

(
1− δ2

)
u0

)
for n ≤ L− 1. (10)

Likewise,

vn = vn ≡ δ(N−n)vN for n ≥ R,

un = un ≡ δ(N−n)
(
uN + (N − n)

(
1− δ2

)
vN

)
for n ≥ R + 1(11)

The functions un, un, vn, vn are important for the analysis of equilibrium
behavior and are also intuitive. un and vn provide the minimum utility that
the players can obtain. un sets out the worst that can happen to Left . At
node n, if Left invests nothing in the next n battles, Left will lose the game
n periods hence, resulting in utility un. vn is analogous.
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Given un, it is possible to compute Right ’s payoff. This calculation is
exactly analogous to the calculation of the higher valued player’s payoff in
the static first-price war of attrition. Once we know that Left obtains zero
net utility, we can calculate his value of winning a node αn = −

(
1− δ2

)
un.

Right ’s payoff can then be calculated since all the rent, βn−αn, must accrue
to her. Also note that Right ’s payoff vn is composed of two terms. The first
term is the utility of winning, which is discounted by the minimum number of
periods it will take to reach the prize. This is not to say that Right will reach
the prize in n periods, but rather that it can, by exerting sufficient effort.
The total effort exerted to win for sure, from position n, is −δnn

(
1− δ2

)
u0.

In fact, the maximum effort at node m is −δm
(
1− δ2

)
u0, and discounting

and summing gives the present value of the cost of effort of −δnn
(
1− δ2

)
u0.

This outcome would arise if Right exerted maximum effort until winning.9

Define Ψn and Φn as

Ψn ≡ un + vn = δn
(
v0 + u0 + n

(
1− δ2

)
u0

)
Φn ≡ un + vn = δ(N−n)

(
uN + vN + (N − n)

(
1− δ2

)
vN

)
Note that sn = Ψn for n ≤ L − 1 and sn = Φn for n ≥ R + 1. Satis-
fying the constraints (4) and (5) depends on the properties of these func-
tions. It is therefore useful to first understand their behavior to under-
stand equilibrium behavior. It may be verified that δ2 (Ψn−1 −Ψn+1) =(
1− δ2

) (
vn+1 − un+1

)
and δ2 (Φn+1 − Φn−1) =

(
1− δ2

) (
un−1 − vn−1

)
. More-

over, vn and vn are decreasing while un and un are increasing. Now, if we
define nL and nR to be the real numbers that satisfy

vnL = unL
and unR = vnR

,

Ψn−1 > Ψn+1 holds only if n < nL − 1 while Φn−1 < Φn+1 holds only if
n > nR + 1. Therefore, the inequalities sn−1 > sn+1 and sn−1 < sn+1 for
n ≤ L− 2 and n ≥ R + 2 respectively that were argued to be necessary for
equilibrium behavior (See (4) and (5)) can hold if and only if

L− 1 ≤ nL and R + 1 ≥ nR. (12)

The above presents a simple necessary condition for ruling out the ex-
istence of a no-draw equilibrium, namely nL < nR. An equilibrium in this

9It is not an equilibrium for Right to do so; Right must randomize. If it turned out,
however, that the outcomes of the randomizations were the maximum of the supports,
then the outcome described arises, which gives Right ’s utility.
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case, if it exists, would necessarily be a draw-equilibrium. In fact, we have
a sharper result. Let L0 and R0 denote integers such that

ΨL0−1 > 0 > ΨL0 and ΦR0 < 0 < ΦR0+1.

Note that L0 and R0 occur around the point where Ψn = 0 and Φn = 0.
Therefore, necessarily, L0 < nL and R0 > nR.

Theorem 1 (Draw Equilibrium). A draw equilibrium exists if and only if
R0 ≥ L0 + 3. Moreover,

1. Such an equilibrium is unique with L = L0 and R = R0.

2. (10) and (11) give the payoffs for n ≤ L − 1 and n ≥ R + 1, while
vn = un = 0 for n = L + 2, . . . R − 2. The remaining payoffs are
vL+1 = uR−1 = 0 and

uL+1 = − δ2

1− δ2
ΨL−1

vL =
δ

1− δ2
ΨL−1

uR =
δ

1− δ2
ΦR+1

vR−1 = − δ2

1− δ2
ΦR+1

(13)

3. Neither player exerts any effort at L0 + 2, . . . R0 − 2.

Part 3 of the above Theorem is especially noteworthy. A mixed strategy
equilibrium is played at L + 1. There is (of course) a positive probability of
transition from a no-draw region to a draw region. But note that βL+1 <
αL+1. As a result, there is a higher probability of movement to the right,
i.e. to the draw region. As will be shown, the probability that Right wins
a node increases as one moves closer to the left end, except that at L + 1,
it is reversed. The behavior of Left can therefore be interpreted as a “last
ditch” attempt by her to force a draw instead of a likely loss.

As already mentioned, when nL ≤ nR, a draw-equilibrium must exist.
From Corollary 1 and (12), this is also a simple condition for non-existence of
a no-draw equilibrium. A condition more precise than the mere requirement
nR < nL is needed to characterize the existence of a no-draw equilibrium.

Define n∗ by Ψn∗ = Φn∗ , with n∗ = 0 if Ψ0 ≤ Φ0 and n∗ = N if
ΨN ≥ ΦN . If nL ≤ nR or n∗ /∈ [nR, nL] n∗ is said not to exist. Essentially,
n∗ exists if either Ψn and Φn do not intersect between 0 and N , or intersect
in an interval where Ψn−1 −Ψn+1 or Φn+1 − Φn−1 is positive.

Theorem 2 (No-draw Equilibrium). A no-draw equilibrium does not exist
if n∗ does not exist. If n∗ does exist however, a no-draw equilibrium with
R = L + 1 exists if and only if ΨL−1 ≥ ΦL+1 and ΨL ≤ ΦL+2. Moreover, if
Ψn∗ ≥ 0, this is the unique equilibrium.
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In a no-draw equilibrium where R = L+1, the only undetermined payoffs
are vL and uL+1 – all others are given by (10) and (11). The corresponding
equations for these variables, from (6) and (7) are vL = δΨL−1− δuL+1 and
uL+1 = δΦL+2 − δvL, which can be solved to get

vL =
δ

1− δ2
(ΨL−1 − δΦL+1) uL+1 =

δ

1− δ2
(ΦR+1 − δΨL−1) (14)

We end this section with three caveats. First, the integers L0 and R0 are
well defined for a generic set of parameters and makes Theorem 1 a tight
characterization. When n∗ ∈ (nR, nL) and Ψn (n∗) ≥ 0, the existence of a
draw equilibrium is precluded. For, in this case L0 > R0 necessarily. To
guarantee the existence of a no-draw equilibrium where R = L+1, according
to the above result, an integer L must be be found such that ΨL−1 ≥ ΦL+1

and ΨL ≤ ΦL+2, which implies that n∗ ∈ [L,L + 1]. However, even if n∗

exists, these inequalities cannot be ensured due to integer problems nor
can they be resolved through a perturbation of parameters. A no-draw
equilibrium with R = L + 1 may fail to exist. Further, it turns out that a
no-draw equilibrium with R = L+3 cannot exist when Ψn∗ ≥ 0. As a result,
with Ψn∗ ≥ 0, the non-existence of an equilibrium remains a possibility. We
overlook these issues that arise primarily due to the integer problems, and
partly justify the rest of the analysis by looking at the continuous limit at
N →∞ in Section 2.1.

Second, our two theorems do not discuss no-draw equilibria with R =
L + 3. There are two facts of such equilibria that are of economic interest.
Other than this, such equilibria offer no further insights but developing an
explicit set of necessary and sufficient conditions for its existence involves
extremely cumbersome algebra. An interested reader may choose to consult
the proof of Case 2, Theorem 1 in McAfee [2000] for the details.

The first interesting aspect of a no-draw equilibrium with R = L + 3 is
that the sum of players’ payoffs at n = L, . . . , L + 3 is negative as are the
payoffs of each player at L + 1, L + 2. This indicates a prisoner’s dilemma
feature to equilibria. If dropping out of the game is permitted, then the
players would like to do this, but not if dropping out means losing the war.
On the other hand, it is worthwhile to note that the continuation payoff in
a draw equilibrium is always non-negative. The other aspect is that, the
negative players’ utility also implies that Ψn∗ < 0 and as a result, with
enough nodes, L0 < R0. This implies that a draw equilibrium typically
co-exists with a no-draw equilibrium.

Third, we have omitted a description of the equilibrium strategies in the
statements of the two Theorems. However, recall that the mixed strategy
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equilibrium at any node corresponds to the equilibrium of an all-pay first
price auction. Therefore, at any such node, the higher valued player chooses
a uniform distribution on [0,min {αn, βn}], the lower valued player bids 0
with probability 1−min {αn, βn} / max {αn, βn} and according to a uniform
distribution on [0,min {αn, βn}] with the remaining probability.

2.1 Continuum of Battles

A number of interesting conclusions can be drawn on the basis of Theorem
1 & Theorem 2 that we address in the sequel. For some of these, it is
instructive to look at the limiting case when the number of battles becomes
infinitely large so that in the limiting model, battles are fought along a
continuum. We do this by fixing the amount of discounting required to cross
the entire playing field, so that the set of points is refined while holding the
overall distance constant. That is, we take

e−γ = δN (15)

and then send N to infinity. It is unnecessary to reduce the costs of conflict,
since that is equivalent to scaling utilities. Let λ = limN→∞ n/N . Ψn and
Φn then converge, pointwise, to

Ψ (λ) = e−γλ (u0 + v0 + 2γu0λ)
Φ (λ) = e−γ(1−λ) (uN + vN + 2γvN (1− λ))

Let λL and λR denote the solutions to Ψ (λ) = 0 and Φ (λ) = 0 respec-
tively. Then in the limit, L0/N → λL and R0/N → λR. Further, if we let
λ∗L and λ∗R denote the minima of Ψ and Φ, nL/N → λ∗L and nR/N → λ∗R
as N → ∞. From this, the findings of Theorem 1 and Theorem 2 can be
summarized as follows in terms of these parameters.

1. A draw equilibrium exists if and only if λL < λR. Everywhere to the
left of λL, Right is the player with a higher value while the opposite
holds to the right of λR. A draw occurs in the region (λL, λR).

2. For a no-draw equilibrium, one of the following must occur:

(a) Ψ (λ∗) = Φ (λ∗) for some λ∗ ∈ [λ∗R, λ∗L] and 0 < λ∗ < 1.
(b) Ψ (0) ≤ Φ (0).
(c) Ψ (1) ≥ Φ (1).

In this case, Right is the player with higher value to the left of λ∗, the
opposite holds to the right of λ∗.
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For clarity, a situation where λ∗ does not exist is depicted in Figure 2. Here
the curves Ψ(·) and Φ(·) intersect in a neighbourhood where the former is
increasing. In a neighbourhood of λ∗ it is impossible to satisfy Ψn−1 > Ψn+1.
Therefore a no-draw equilibrium cannot exist. In Figure 4 or Figure 5, we
have a situation where an interior λ∗ exists since Ψ(·) is decreasing and
Φ(·) is increasing at the point of their intersection. Therefore a no-draw
equilibrium can exist.

u0 + v0 uN + vN

λL λR

Ψ(·) Φ(·)

Figure 2: A case where λ∗ does not exist

It may be confirmed through a routine calculation that

λL = − 1
2γ

(
1 +

v0

u0

)
1− λR = − 1

2γ

(
1 +

uN

vN

)
λ∗L =

1
2γ

(
1− v0

u0

)
1− λ∗R =

1
2γ

(
1− uN

vN

)
Figure 3 depicts the regions in which the draw and no-draw equilibria exist
in the −v0/u0,−uN/vN space.

Everywhere above the shaded region, λL > λR. Therefore in this re-
gion, a unique no-draw equilibrium occurs. Below the line with the inter-
cept 2 (γ − 1), λ∗L < λ∗R. In this region only a draw equilibrium can exist
(uniquely). Between these lines, it is possible for both the no–draw equi-
librium and a draw equilibrium to exist. In general, for a given set of end
values, greater impatience i.e. high γ favors a draw equilibrium while a low
γ, say in (0, 1) rules out the uniqueness of a draw equilibrium.
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2(1 + γ)

2(1 + γ)

2(γ − 1)

2(γ − 1) − v0
u0

−uN
vN

Unique Equilibrium (No-draw)

Unique Equilibrium (Draw)

No-Draw + (Possibly) Draw Equilibria

Figure 3: Regions where different equilibria exist

2.2 Effort and Welfare Levels

The sum of the utilities of the two players everywhere to the left of L is
given by Ψn and everywhere to the right of R by Φn. Therefore in the
limit of no-draw equilibria, the sum of players utilities is given by the upper
envelope of Ψ (·) and Φ (·) as depicted in Figure 4.
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u0 + v0 uN + vN

λL λR
λ∗

Ψ(·) Φ(·)

Figure 4: Sum of players’ payoffs in a draw equilibrium. Draw occurs in
(λL, λR).

The sum of players’ utilities in the case of a draw equilibrium equals zero
in the region of a draw but is given by either Ψn in the left field or Φn in
the right field. In the limit of draw-equilibria, the sum of players’ utilities is
max {Ψ(λ) ,Φ (λ) , 0}. These are depicted in Figure 4. Both in a draw and

u0 + v0 uN + vN

λL λR
λ∗

Ψ(·) Φ(·)

Figure 5: Sum of players’ payoffs in a no-draw equilibrium

a no-draw equilibrium, the sum of players’ utilities increases as we move to
either end

Next, consider the maximum effort at node n < L. Left ’s win value
here is αn = δ

(
un+1 − un−1

)
= −

(
1− δ2

)
δnu0. As Left is the player with
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a lower value of winning these nodes, αn is also the maximum effort that
either player will choose at these nodes, which is seen to be increasing as
one moves closer to the left end. As must be the case, the maximum effort
at a node converges to zero as N gets large10.

We collect the observations of this (sub)section in the form of a propo-
sition below, without offering a further explicit proof.

Proposition 1. In any equilibrium,

1. The sum of utilities, average and maximum efforts initially decline in
n for n < L and then rise for n > R, (possibly with a segment constant
at zero).

2. In the limit, the total utility at λ is given by max {Ψ(λ) ,Φ (λ)} in
case of a no-draw equilibrium and by max {Ψ(λ) ,Φ (λ) , 0} in case of
a draw-equilibrium.

In words, total utility is maximized on the edges, and minimized in the
center.

2.3 Probability of Win and Duration Of War

Let pn denote the probability of transition n→ n−1, which is the probability
of Right ’s win. For n < L, Right is the higher valued player and from
the analysis of the first price war of attrition (see Proposition 4), pn =
1−αn/2βn > 1/2. Making the substitution from the equilibrium payoffs for
βn = δ (vn−1 − vn+1) and αn = δ

(
un+1 − un−1

)
,

pn = 1− 1
2

−u0

v0 + (n− 1) (1− δ2) u0 − 2δ2u0
n < L (16)

and, taking the limit as n/N → λ, N → ∞, p (λ) the flow probability of
Right winning a “battle” when there are a continuum of battles is given by

p (λ) = 1− 1
2

−u0

v0 − 2 (1− γλ) u0

where λ < λL in a draw-equilibrium and λ < λ∗ in a no-draw equilibrium.
For n > R and λ > λ∗ or λ > λR, the expressions for pn and p (λ) can be
analogously derived.

Note that pn is only the probability of winning a node. How does this
translate into the probability of winning the war? First consider a no-draw

10However the flow rate of effort must still be positive.
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equilibrium and let qn denote the probability that Left wins the war, that
is, the state reaches N . The probabilities qn are defined by q0 = 0, qN = 1
and

qn = pnqn−1 + (1− pn) qn+1 (17)

Equation (17) expresses the law of motion for translating the likelihoods
of winning battles into ultimate victory in the war. For economy of expres-
sion, it is configured so that pn is the probability Left loses a battle, but qn

is the probability Left wins the war. Equation (17) states that the likelihood
of winning from state n is the likelihood of winning from state n− 1, times
the probability of reaching that state, plus the likelihood of winning from
state n + 1 weighted by the probability of transition to that state.

The above expression for qn can be rewritten to get

qn+1 − qn =
pn

(1− pn)
(qn − qn−1) (18)

The above equality inducts to give

qn+1 − qn =
pn

1− pn
(qn − qn−1)

= (q2 − q1)
n∏

j=1

pi

1− pi

Since q1 = (1− p1) q2, the above RHS is non-negative and shows immedi-
ately that qn+1 ≥ qn. Moreover, when n < L, pn > 1/2 and from (18),
qn+1 − qn > (qn − qn−1) while for n > R, the opposite inequality holds,
which is to say, that qn is convex for n < L. Similarly, it is concave for
n > R.

The foregoing discussion is presented as a proposition below, again, the
proof is evident.

Proposition 2. In any equilibrium,

1. The probability that Left wins a battle is less than 1/2 for n < L and
greater than 1/2 for n > R.

2. The probability that Left wins a battle is increasing in n, for n < L
and n > R.

3. In a no-draw equilibrium, the probability that Left wins the war, qn, is
non-decreasing in n. In addition, qn is convex for n < L and concave
for n > R.
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Proposition 2 has the following interesting implications. There is a de-
fense disadvantage–the agent closest to losing the war is more likely to lose
any given battle. In particular, when the battlefront is near Left ’s home
base, Left wins the next battle with probability less than 50%. In spite of
this likelihood of losing, the closer the current node gets to the end, the
harder both sides fight. Finally, there is a momentum effect. As Left gets
closer to winning, it’s likelihood of winning the next battle rises. This ef-
fect is a consequence of discounting, and doesn’t arise if the players do not
discount future payoffs.

Part 3 of the above result also shows that the probability Left wins the
war is non-decreasing as one moves closer to her favorite end. While this
result is only stated for the case of a no-draw equilibrium, the computations
given above admit a straightforward modification to account for a draw
equilibrium. In a draw equilibrium, qn is the probability of a draw when
n < L. For n > R, qn is the probability of Left ’s winning the war. It
monotonicity and concavity properties are preserved in these regions. Thus,
in particular, the probability that Left does not lose the war is always non-
decreasing.

Yet another object of interest is the duration of the war. Let ∆n denote
the expected duration of the war. Analogous to qn, the expected duration
satisfies

∆n = 1 + pn∆n−1 + (1− pn) ∆n+1 (19)

This too an be analyzed analogously to qn, but the actual solution is com-
plicated. The following describes its behavior when N diverges.

Proposition 3. In the limit of no-draw equilibria where n/N → λ, N →∞,

qn → q (λ) =
{

0 if λ < λ∗

1 if λ > λ∗
∆n

N
→

{ ∫ λ
0

1
2p(x)−1dx if λ < λ∗∫ 1

λ
1

1−2p(x)dx if λ > λ∗

With a very fine grid, the likelihood of winning any particular battle
for Left converges to a number which is not zero or one, but in between.
However, since the war is now composed of a very large number of battles,
the outcome of the war is deterministic. The duration of the war converges
to a remarkably simple expression, and is roughly linear in λ11. The duration
can be interpreted as follows. With a likelihood of moving left of pn, the
expected net leftward movement per period is pn−(1−pn) = 2pn−1. Thus,

11To be precise, duration is exactly linear when there is no discounting, i.e. γ = 0. In
this case, p is constant (although a different constant on either side of λ∗).
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1/(2pn − 1) is the expected number of periods to move one unit to the left.
The integral to the current period gives the number of periods to reach zero.
The analogous calculation holds to the right of λ∗

3 Comparative Statics and Special Cases

3.1 Lower Cost of Effort

In a standard war of attrition (oral first price or second price), conditional on
observing a war of attrition, the lower cost player is more likely to drop out.
This defect arises for the usual reason with mixed strategy equilibria – each
player randomizes in such a way as to make the other player indifferent. As a
consequence, the low cost player must be more likely to drop out in the next
instant, so as to make it worth the cost to the high cost player of remaining
in the game.12 Fudenberg and Tirole [1986] note this defect, describing it
as a consequence of mixed strategies, without additional comment.

From an economic perspective, the defect in the theory arises because
the low cost player is forbidden by assumption from fully exploiting its low
cost. The low cost player might like to present a show of force so large that
the high cost player is forced to exit, but the usual game prohibits such
endogenous effort. In most actual wars of attrition, players have the ability
to increase their effort, so as to force the other side out. The US theory on
war since Vietnam is that the public won’t stand for a protracted conflict,
and thus the US will lose if it does not win quickly. As a consequence, the
US brings an overwhelming force to a conflict. (See, e.g. Correll [1993].)
The 1991 Desert Storm conflict appears to be an example of this approach.
Similarly, Barnes and Noble entered Internet book sales aggressively, with a
large commitment of resources.

In contrast to the standard model, the continuing war of attrition does
have the low cost player more likely to win, and even more likely the lower is
the player’s cost. This can be seen by first noting that a lower cost of effort
is equivalent to rescaling both the utility of winning and losing by a factor
exceeding unity. For example, if Left ’s cost of effort is reduced in half, the
effect is the same as doubling u0 and uN . Lowering the cost of Left ’s effort
shifts Ψ down and Φ up, and thus shifts n∗ (or λ∗) to the left unambiguously.

12It might be that appropriately chosen refinements insure the high cost player drops
out more often at the start of the game. However, having the high cost player drop out
initially doesn’t solve the application problem. The theory still predicts that, when a war
of attrition is observed, it is the low cost player who is more likely to exit, and the high
cost player more likely to win the war.
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u0 + v0

1.2u0 + v0

uN + vN

1.2uN + vN

λL λR

λ∗ moves left

Ψ Φ

Figure 6: The effect of a 20% decrease in Left ’s cost.

The region where Left is more likely to win expands. The effect on λ∗ is
illustrated in for the continuous case. In addition, the likelihood that Left
wins any particular battle also increases, as we see from (16). In the limit,
the duration of the war falls when Left is the likely winner, and rises when
Left is the likely loser.

3.2 Patient Players

When players can take actions very often, the time between battles is re-
duced and the discount factor converges to 1. This is a different thought
experiment than making the playing field continuous while holding the dis-
counting required to cross the entire playing field constant. It is easy to see
that Ψn → u0 + v0 and Φn → uN + vN , so that there is a global winner,
and it is the agent whose victory provides the greatest combined surplus. If
that combined surplus is negative for either winner, then there will also be
an equilibrium where there is a draw, except on the edges.

If the original game (ignoring effort) is constant sum, so that u0 + v0 =
uN + vN , so that the combined surplus is the same for both players, then
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the switch point n∗ satisfies13:

n∗

N
=

uN − vN

uN − vN + v0 − u0

Thus, the relative profits from victory determine the critical point, and
Left is more likely to win the larger is his profits.

3.3 Zero loser utility

We have thus far focused on situations where a status quo is valued to a
loss. In some cases, the disutility from a loss may not be any different
from the status quo. Although we do not explicitly allow for u0, vN = 0,
it is nonetheless possible to conduct the thought experiment on the limit of
equilibria as u0, vN → 0, keeping v0 and uN fixed. In this case, the resulting
values of −v0/u0 and −uN/vN are large putting us in the region (in terms of
Figure 3) where only a unique draw equilibrium is a possibility: everywhere
to the right (left) of λ∗ Left (Right) is the more (less) likely winner.

Konrad and Kovenock [2005] study a tug-of-war in which the loser utility
and the draw utility are zero. However, in their model, a coin toss determines
the winner if the chosen efforts result in a tie. In stark contrast to the feature
of zero loser utility described above, in the equilibrium of their model at most
two battles are fought at a pair of adjacent nodes. At all other nodes a coin
toss determines the movement. Here, on the other hand, the possibility of
a draw forces every node to be contested. However, Left ’s value of winning
a node for n < n∗, which is αn = −

(
1− δ2

)
δnu0 also becomes small.

Therefore the probability that Right wins these nodes becomes close to one.
(See (16)). Consequently, whoever wins the battle around the switch point,
becomes the eventual winner with a probability arbitrarily close to one as14

u0, vN → 0.
13For u0 + v0 = vN + uN , rewrite Ψn = Φn as`

δn − δN−n
´
(u0 + v0)

1− δ2
= −δnnu0 + δN−n (N − n) vN .

Using L’Hopital rule and taking the limit as δ → 1 gives − (n− (N − n)) (u0 + v0) /2 =
− nu0 + (N − n) vN , which n∗ solves.

14The speed with which vN converges to zero relative to the speed of convergence of u0

makes a difference. The comments here assume they are converging at the same speed.
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4 Applications

4.1 The Colonial Power

Contests such as the US in Vietnam, France in Algeria or Microsoft versus
Netscape may be considered as analogous to a colonial war; one side con-
tinues to survive after a loss in the conflict, while the other is extinguished.
We let the larger power be Right, with the defenders being Left . A victory
for Right implies that Left is extinguished; the cost to Left of a loss should
be viewed as being very large. This willingness to suffer any consequence
to avoid losing might be modeled as u0 → −∞. As u0 → −∞, so does Ψ
and thus the region where Right wins disappears. Here, unless the colonial
power wins an instant victory, it loses.

However, the desire of the defenders not to lose is not the only salient
aspect of a colonial war. The colonial power typically has a lower cost of
materials, and perhaps even of troops, given a larger population. Lowering
the cost of fighting is the same as a rescaling of the values of winning and
losing. Thus, sending the cost of fighting to zero sends both v0 and −vN to
∞. As we saw above, this favors the colonial power, and the prediction of
the likely winner turns on whether the cost of the colonial power is relatively
low, when compared with the cost of the defenders.

4.2 Legal Battles & Debates

Consider a tort dispute between a potentially injured plaintiff and a poten-
tially liable defendant15. We let the plaintiff be Left and the defendant be
Right . An important characteristic of the legal system is that a win for the
defendant involves the same payoff as a draw without fighting; that is, the
defendant pays the plaintiff nothing. Formally, in the model, u0 = v0 = 0,
implying Ψn = 0. The prediction of the theory is that there are two regions,
with a draw on the left, and fighting on the right. Thus, rather than plain-
tiffs formally losing, the plaintiffs just go away when the situation favors the
defendant.

If uN + vN < 0, then a draw is the unique outcome. At first glance, it
might seem that a legal dispute has to be a negative sum game. However,
these values are scaled by the cost of effort, so that, when the plaintiff has a
lower cost of effort, uN may well exceed −vN , even when the original game
is zero sum.

15Litigation is often viewed as a war of attrition. For a particularly entertaining example,
see Supreme Court [1997] for an account of David Kim’s battles with Sotheby’s auction
house, at Supreme Court of New York.
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In order to win, a plaintiff needs to survive a number of challenges by
the defendant. First, defendants regularly challenge the plaintiff’s standing
to sue. If the plaintiff survives, the defendant requests summary judgment
– that the plaintiff can’t, as a matter of law, win. If the plaintiff wins
that battle, the plaintiff is permitted to put on a case. At this point, the
defendant typically requests a directed verdict, alleging that the plaintiff has
failed to prove their case. Again, should the plaintiff prevail, the defendant
puts on their case; if the plaintiff prevails, typically the defendant appeals.
One can think of this as a five node battle (this means N=6).

Motion to
Dismiss

←→ Summary
Judgement

←→ Directed
Verdict

←→ Jury
Verdict

←→ Appeal

If the plaintiff loses at a stage, the plaintiff can appeal; victory in the
appeal permits advancement to the right16. As a practical matter, if the
plaintiff loses the jury verdict, appeal is relatively difficult. In the model,
the current node is a sufficient statistic for the state of the system. In an
actual legal conflict, as in many conflicts, history will matter – even when
an appeal sets aside a jury verdict, some of the issues (such as discovery
limits) may remain.

4.3 Lobbying

Consider a collective choice environment where the policy space is a line
segment with two players endowed with Euclidean preferences. Suppose the
current status-quo policy is xS and that Left and Right have a bliss point
at xL and xR respectively, where xL < xS < xR. Suppose a win by a player
means switching the collective decision to her favorite policy. Typically a
“contest” such as the one introduced in Tullock [1980] (and analyzed further
in Dixit [1987]) is used to study rent seeking behavior in such environments.
Instead, it is reasonable to posit that a player must win a series of battles
before winning the decision to be in her favor. The implications of modelling
this as a CWA are as follows.

Normalizing the utility of the status quo to zero, v0 = r, vN = r−t, u0 =
` − t and uN = ` where ` = (xS − xL), r = (xR − xS) and t = (xR − xL).
That is, r for Right and ` for Left are the option values of switching to
her favorite policy. t determines the utility loss if the competitor’s favorite
outcome is selected.

16In the event of a victory, the plaintiff can sell the rights to the judgment to the
Judgment Purchase Corporation, who will then handle the appeal. See Fisk [1999]
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Note that

− v0

u0
− uN

vN
=

r

t− `
+

`

t− r
0 ≤ `, r < t

Whether the two players choose to necessarily fight until a change is
adopted or perhaps settle for a draw can be seen from Figure (3) on ex-
amining the above sum. When either r or ` is close to t, the above sum is
high. This describes a situation where the status quo is close to the favorite
policy of at least one player. These situations are characterized by a unique
no-draw equilibrium in which the players fight incessantly until one player
wins. When players are similar so that both r and ` are close to each other,
a draw equilibrium obtains. In the intermediate range, both a draw and a
no-draw equilibrium occurs.

5 Extensions

5.1 A minimum level of effort

In many situations, it is reasonable to assume that a certain minimum effort
must be exerted before play from a node can be advanced in either direction.
It turns out that allowing for this modification can result in a qualitative
change in equilibrium behavior. Indeed, introduce m > 0 so that actions in
the stage game lie in 0 ∪ [m,∞]. A transition n→ n± 1 cannot be effected
unless the effort choices x, y satisfy max {x, y} ≥ m. Otherwise, the game
is identical to the one studied earlier.

A minimum level of effort produces an important feature of equilibrium
not present in the previous analysis. There can be uncontested regions,
where one player exerts a minimum level of effort and the other exerts none.
These regions tend to surround a draw region, where neither player exert
effort. Moreover, the player who fails to contest in the uncontested region
eventually starts fighting to delay the end of the game, but in the uncon-
tested region, the end is sufficient distant that it is not worth the minimum
to delay further. Another new feature that emerges here is the impossbility
of a transition to a draw region from a region where fighting occurs. The
minimum can also kill no-draw equilibria.

For brevity, we provide a sketch of the analysis. We begin with the
impossibility of a no-draw equilibrium and then present a draw equilibrium
with the above features.

Despite the presence of a minimum bid, Lemma 1 and its proof generalize
virtually ad verbatim. Further, if an equilibrium were to occur in mixed
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strategies at a node n, it must involve both players bidding uniformly on
[m,min {αn, βn}] along with mass points at m and 0 by the higher and
lower valued players respectively. The consequent net payoff for the lower
valued player is zero while the higher valued player gets the entire rent
max {αn, βn} − min {αn, βn}. In other words, Part 2 of Lemma 2 holds.
Furthermore, the proof of Lemma 3 depends primarily17 on this property
and therefore, Part 2 of Lemma 3 and Corollary 1 readily generalize. Thus,
a no-draw equilibrium, should one exist, must have R = L + 1 or R = L + 3
with αn < βn for n ≤ L and αn ≥ βn for n ≥ R.

Just as in the original then, there exists an integer L such that every-
where to its left, Left profits less than Right from winning a node and hence
un = un and αn = αn ≡ −

(
1− δ2

)
un still hold for such n. The utility com-

putation for Right is now different. For, there could be a threshold integer
Lm < L where αLm

> m ≥ αLm+1 so that everywhere between Lm + 1 and
L, only Right exerts a positive effort with the result vn = δvn−1 −m. For
n ≤ Lm, as before, vn = δvn−1−αn. Putting these together, we have a new
expression for the utility of Right for n ≤ L, i.e. vn = v̂n where

v̂n =
{

vn if n ≤ Lm

δn−LmvLm −
(
1− δn−Lm

)
m

(1−δ) if n > Lm

Finally, note that at a node n where only Right exerts a positive effort, her
payoff if she chooses not to bid is δvn which should not be greater than vn

her continuation payoff. Thus, vn ≥ 0 at all n ≤ L is required. If we let
n̂L denote the real number such that v̂n̂L

= 0 and similarly define n̂R with
respect to the right end of the playing field, a no-draw equilibrium is an
impossibility if

n̂L < n̂R (20)

When does this inequality hold? It is easier to visualize the above con-
dition in the limit as N diverges. Given m, note that the total minimum cost
for transversing the entire playing field, for a given N , is m

(
1− δN

)
/ (1− δ).

In taking the limit, we will ensure that the minimum bid is such that this
total remains a constant. That is, pick a constant M > 0 and set m ≡ mN

where
mN =

(1− δ)
(1− δN )

M (21)

17The reader would need only augment the proof of Lemma 3 with a few straightforward
points that concern the behavior at a node where a pure strategy equilibrium in which
exactly one player exerts positive effort (m).
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It is easily seen that un converges pointwise to u (λ) = e−βλu0 and
Lm/N → λm where

−2u (λm) = M/
(
1− e−β

)
.

With this in mind, and a little algebra, one can show that v̂n converges
pointwise to v̂ (λ) where

v̂ (λ) =
{

v (λ) if λ ≤ λm

ξ (λ) v (λm) + (1− ξ (λ)) −M
1−e−β

if λ > λm

where ξ (λ) = e−β(λ−λm).

Remark 1. Everywhere to the right of λm, note that v̂ is a convex combina-
tion of a (typically) positive number v(λm) and a negative entity −M/(1−
e−β). Further, a greater weight is added to the negative part at an exponen-
tial rate as one moves away to the right of λ. Moreover, λm moves inversely
with M . These observations can be used to conclude that even for “moder-
ate values” of M , v̂(1/2) < 0. One can argue likewise for a symmetrically
defined û(·) that û(1/2) < 0. Consequently, result (20) must obtain for high
enough M .

We now turn to the existence of a draw equilibrium that has the prop-
erties described earlier on in this section. First define

Ψ̂n = v̂n + un (22)
Φ̂n = vn + ûn (23)

where ûn is defined analogously to v̂n. Lm is as defined earlier but set L
to be such that Ψ̂L < 0 ≤ Ψ̂L−1. Rm is analogous to Lm while R satisfies
Φ̂R+1 ≥ 0 > Φ̂R.

Remark 2. Suppose R > L+2. The following bidding behavior constitutes
an equilibrium.

1. At n = 1, . . . , Lm: Right bids m with probability m/αn and according
to the uniform distribution on [m,αn] with the remaining probability.
Left bids zero with probability 1− (αn −m) /βn and according to the
uniform distribution on [m,αn] with the remaining probability.

Bidding at n = Rm, . . . , N − 1 is similar to the above.

2. At n ∈ [Lm + 1, L− 2]: Right bids m, Left does not bid. Likewise, at
n ∈ [R + 2, Rm − 1]: Left bids m, Right does not bid.
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3. At n = L− 1 and n = R + 1, either a pure strategy equilibrium as in
(2) or a mixed strategy equilibrium as in (1) occurs.

4. At n = L, . . . , R, neither player chooses a positive effort.

The table of the payoffs that correspond to the above equilibrium is
presented as Remark 3 in the Appendix. This, together with steps similar
to those in the proofs of Theorem 1 and Theorem 2 can be followed to verify
that the above is indeed an equilibrium.

Just as its’ counterpart with m = 0, note that in the above equilibrium
too the sum of players’ payoffs is u-shaped – and is given by max {Ψn,Φn, 0}.
Unless neither player exerts any effort, the maximum that is bid at any node
is max{αn, βn,m}. Just as in the original, this is u-shaped.

The transition probabilities are rather different however. If at n = L−1 a
pure strategy equilibrium were to occur, (See Part 3 above), it is impossible
to transit from a region of fighting to a draw. This possibility does not occur
when m = 0.

5.2 Other stage games

In this paper we have considered the CWA where a first price all pay auction
is played at every node. The analysis of the model readily extends to the
case where the stage game is some other standard auction (without reserve
prices). In all such auctions, the player with the higher valuation wins and
extracts a rent that equals the difference in the valuations. In other words,
Lemma 2 can be seen to hold. Consequently, the same equilibrium payoffs
as described by Theorem 1, Theorem 2 can be achieved.

There is a difference however in the probability of transition from one
node to another. This can be illustrated by considering the Vickery Auction
to be the stage game and payoffs as in a draw equilibrium. For all n ≤ L0,
βn > αn and therefore Right wins such a node with probability one. Starting
from such a node, Right will win the auction with probability one in n
periods. At n = L0 +1, βn < αn. Therefore, Left wins and with probability
one, the transition to n = L0 + 2, a state where neither player exerts any
effort, occurs and the game ends in a draw. In contrast, there is a positive
probability of win for Right at the L0 + 1 in the CWA studied here which
remains positive even in the limit at N →∞.
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5.3 Budget Constraints

Although we have not explicitly modeled budget constrained players here,
the CWA can be reinterpreted to accommodate them. Through a purifica-
tion argument on the mixed strategies played at each node, our study can
capture budgetary constraints on the flow of resources as follows.

Assume that at each date, the resource made available to a player18

is the realization of a random variable distributed continuously according
to F (·) on [0, w] for w sufficiently large. It may be useful to think of a
player fighting based on the donations that she has received, arguably a
reasonable description of Percy Schmeiser’s affair with Monsanto.19 Draws
are independent across players and across nodes and observed privately.
Also, wealth cannot be saved from one period to the next cannot.

The stage game is now a first price all pay auction with incomplete
information about the other player’s wealth but valuations αn and βn are
common-knowledge. Che and Gale [1996] (see their Lemma 2) show that
a Bayesian equilibrium of this game when αn = βn generates the same bid
distribution as the mixed strategy of its complete information counterpart.
It may be noted that their result does not depend in an essential way on
αn = βn. As a result, the entire analysis of CWA can be conducted with
either one or two sided incomplete information about the budgetary flows of
the opponents, under the assumption that resources cannot be stored, but
can be spent on other things.

6 Conclusion

The present model accounts for interesting and salient features of the war of
attrition. First, a lower cost of effort is an advantage. Second, there is what
might be described as a momentum effect–as a player gets closer to winning,
the player’s likelihood of winning each battle, and the war, increases. Third,
as a player gets closer to winning, and the other gets closer to losing, their
efforts rise. Fourth, even in a model in which an infinitesimal effort can upset
a tie, a draw is possible. Fifth, reducing a player’s cost of effort will raise
(lower) the expected conflict duration when that player is weaker (stronger)
than his opponent. Sixth, at a node at the edge of a no-draw and draw
region the likelihood of transition to draw is higher.

That a lower cost of effort leads to a greater likelihood of victory seems
like a necessary condition for a war of attrition to be a plausible model of

18Could be either one or both players that are subject to this budget constraint.
19See Footnote 2 and http://www.percyschmeiser.com/ for details.
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asymmetric contests. While weakness can be an advantage in some conflicts,
it is generally only advantageous when weakness induces accommodation,
as in the puppy dog strategy of Fudenberg and Tirole [1984]. As the term
war of attrition is commonly understood, accommodation is not an option.

As one player gets close to winning, it seems quite reasonable that efforts
rise. The winning player has an incentive to try to end the war quickly, since
that is feasible. Similarly, for the losing player, increased effort delays defeat
and the consequent utility loss. That effort is maximized near the endpoints
of the game provides for ”last ditch efforts” on the part of the (losing)
defender, and an attempt to finish the job on the part of the (winning)
offense. However, the result that total effort is u-shaped is at least a little
surprising. In particular, since there is a discontinuity in the payoff around
λ∗, one might have expected a good bit more effort devoted to pivoting
around this point, rather than a passive acceptance of being on the losing
side of λ∗ on the part of the defense.

The existence of a draw is quite plausible, and appears to arise in actual
conflicts, such as the Hundred Years War between France and Britain, which
displayed long periods of a cessation of hostilities. In the Cold War between
the United States and the Soviet Union, there was also a period of ”peaceful
coexistence,” which could be interpreted as a draw. Theoretically, a draw
should appear as a stationary equilibrium whenever it is too costly for one
side to win when the other side devotes small levels of effort. Over the past
900 years, the position of Switzerland, relative to militarily strong neighbors,
appears to fit this description. Switzerland had little value of winning a war
against a neighbor, since it would be unlikely to succeed in extracting much
surplus from a neighboring country. The militarily strong neighbor faced a
difficult task to defeat Switzerland, because of the terrain (which creates a
high cost of effort for an invading force), and, in this century, Switzerland’s
well-armed populace. As a consequence, the model appears to account for
Swiss independence.

How can nations increase the likelihood of peaceful coexistence? The the-
ory suggests that reducing the payoff to victory unambiguously increase the
set of stable interior outcomes, which have a peaceful co-existence nature.
Similarly, increasing the loss from defeat increases the set of peaceful coex-
istence nodes. These conclusions are reminiscent of the deterrence theory
of warfare, which holds that deterrence arises when the balance of interests
favors the defender20. In particular, it is the relative value of the defender

20See Achen and Snidel [1989] for an eloquent discussion of the theory and its relation
to real situations. Schelling [1962] discusses the need for randomness in the outcome. As
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and attacker that determines the outcome. The logic is that if the defender
values the territory more than the attacker, the defender will have a stronger
will to persist; in this event the attacker will lose. Attackers backward in-
duct and decide not to attack in such circumstances. This is precisely the
prediction of the model, in that peaceful co-existence occurs at all nodes left
of λ∗ when u0 + vN < 0, that is, the cost to the defender of losing exceeds
the value to the attacker of winning21.

Rational deterrence theory has been severely criticized on the grounds
that conflicts occur when the theory suggests that the conflicts are not in
either party’s interests22. The present study suggests that multiple equilib-
ria, one with deterrence or peaceful co-existence, one with war to the end,
are a natural outcome in territorial disputes. The theory also suggests a dis-
tinction between strong deterrence, when peaceful co-existence is the unique
equilibrium, and weak deterrence, when peaceful co-existence is one of two
equilibria. Such a distinction may be useful in understanding the failures of
rational deterrence theory23.

A reduction of the cost of effort for one side has an ambiguous effect
on peaceful co-existence. In the model, a reduction in the cost of effort for
both by equal amounts, should reduce the scope for peaceful co-existence.
This also seems plausible. In some sense, the gain from conflict has not
changed, but its cost has been reduced, so the likelihood of conflict ought
to increase. The model, therefore, can capture the idea that new weapons
can be destabilizing even when held by both sides of the conflict. Weapons
such as the neutron bomb are sometimes considered to be defensive only and
not offensive. While the model does not readily incorporate the distinction
between defensive and offensive weapons, the effects may be modeled by
presuming that defensive weapons increase the cost of effort. Such an change
increases the set of stable nodes in the model.

commonly employed, the theory requires each country to be represented by a rational
representative agent, and these agents playing a full information game.

21 Lieberman [1995] uses the deterrence theory to account for the conflict between Egypt
and Israel which followed shortly after the 6 day war, a conflict commonly called the War
of Attrition (March, 1969-August 1970).

22 See Achen and Snidel [1989] for a summary and critique.
23However, it is not sensible to insist on a full-information rational agent theory. De-

terrence theory has much in common with limit pricing theory, and the approach taken
by Milgrom and Roberts [1982] and offers significant insights for rational deterrence the-
ory, including an understanding of bluffing (via pooling equilibria), and signalling (sabre-
rattling). Some of the critics of rational deterrence theory are actually criticizing an
implicit full information assumption. Given the secrecy employed by the military, the full
information assumption is inappropriate.
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When the value of winning is zero, all interior nodes are stable in the
unique equilibrium. This no-win situation is the theory of mutually assured
destruction for the model; by eliminating the value of winning, neither side
has an incentive to fight, even when a player would like her opponent to lose
to insure she doesn’t lose.

The cost of effort has an ambiguous effect on the expected conflict dura-
tion. By making a strong (winning) player stronger, the player wins a larger
proportion of battles and the war ends more quickly, while the reverse is
true when the weak player is made stronger, unless the weak player is made
sufficiently stronger to become the strong player.

How well does the model confront the colonial conflicts, such as Microsoft
versus Netscape, Barnes and Noble versus Amazon.com, the US in Vietnam
and Iraq, or the Union versus the Confederacy? In contrast to the standard
model, being strong is an advantage. Moreover, a kind of momentum arises
endogenously. Around the critical point λ∗, small gains can make significant
differences in the likelihood of winning the conflict. Indeed, in the limiting
continuum solution, the likelihood of winning is discontinuous at λ∗. In the
case of Internet Explorer or Amazon.com, network externalities are some-
times identified as a reason that there will be an eventual winner. In the
present model, the extreme form of network externalities (winner-take-all)
imposed as a primitive translates into a critical point at which there is a
discontinuity in payoffs.

In the model, as one side gets near to winning, both sides fight harder.
In the military environment, the mortality rate for soldiers should rise near
the end of the conflict. This seems implausible for many conflicts. In a
business context, this prediction should be testable; advertising should be u-
shaped in market share, and prices should be as well. As Internet Explorer’s
market share rose, the prices of both browsers fell, eventually to zero. The
Department of Justice lawsuit against Microsoft probably confounds later
observations about effort by the parties, for Microsoft was given a reason to
accommodate Netscape’s Navigator.

In colonial wars and market share fights, typically the holder of territory
or market share derives a flow return roughly proportional to the market
share. As a consequence, one might expect the contender in the lead to
be able to devote more resources to the conflict, favoring that side. Such
considerations appear to reinforce the instability of sharing the market.
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Appendix

A First price war of attrition

Player 1 and Player 2 simultaneously choose how much to bid in a first price
all pay auction with the following caveat: if the bids tie, Player i receives
a gross benefit wi. Otherwise, the higher bid wins, in which case the gross
benefit of Player i is vi if she wins and zero otherwise.

The above corresponds to the game played at each stage of the Con-
tinuing War of Attrition. The equilibrium of this game is presented below
together with some of its relevant properties properties, but only for those
parameter configurations which are relevant.

Proposition 4. Suppose vi > wi ≥ 0 for i = 1, 2 and let v1 ≥ v2. There
is a unique equilibrium, which is necessarily in mixed strategies. Player 1
bids according to the uniform distribution on (0, v2]. Player 2 bids 0 with
probability 1−v2/v1 and according to the uniform distribution on (0, v2] with
the remaining probability. Moreover,

1. Equilibrium payoffs are (v1 − v2, 0) .

2. Player 1 wins with probability

p = 1− v2

2v1

3. The maximum bid of either player is v2.

4. Average bid of Player 1 is v2/2 and that of Player 2 is v2
2/2v1.

5. Probability of a tie is zero.

Proof. That the strategies described constitute an equilibrium can be easily
verified as well as the characteristics described in Part 1-5 above. For a proof
of uniqueness, follow the arguments that can be found in Hillman and Riley
[1989] or Kovenock et al. [1996]. In these, proofs are offered for the case
where wi = vi/2 but admit a direct extension to the case where wi < vi.

B Proofs

Proof of Lemma 1. Suppose un ≤ 0. If n is the penultimate node, the
statement is true by assumption. Otherwise, let λ denote the probabil-
ity of a tie at n + 1 if Left chooses not to bid. The resulting payoff is
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then λδun+1 + (1− λ) δun ≤ un+1, the payoff if she followed her equi-
librium choice. Rearranging this inequality gives (1− λδ) (un+1 − un) ≥
− (1− δ) un, which gives un+1 ≥ un, the inequality is strict whenever un < 0.

Now consider un > 0. The equilibrium at this node cannot be in pure
strategies. Moreover, note that the closure of the supports of Fn and Gn

must coincide, for otherwise there are values chosen with higher cost and
no higher likelihood of advancing the node. Let x∗ denote the supremum of
Right ’s bid distribution.

There are two cases to consider. First suppose un+1 ≤ un−1. We claim
that Gn and Fn are discrete distributions. If, by way of contradiction,
some x > 0 is a point of continuity of Gn, bids in a left neighborhood
(x− ε, x) of x are dominated by bidding x − ε for a small enough ε > 0,
since in all these cases the probability of a tie is zero but the lower bid also
lowers the probability of a disadvantageous advancement to the right. Such
reasoning establishes that Fn and Gn must be discrete distributions with a
common support. Consequently, x∗ is actually in the support of Fn. Letting
λ denote the probability of a tie when Left bids x∗, her payoff from that
bid is un = δ (1− λ) un+1 + λδun − x∗ < δ (1− λ) un+1 + λδun, which on
simplification implies un < un+1.

Next, suppose un+1 > un−1. It can be seen that the closure of the
support of Fn (and Gn) is an interval. If x∗ is a mass point of Gn with a
mass of λ, then un = δ (1− λ) un+1 − x∗. On the other hand, by bidding
an infinitesimal above x∗, here payoff would be δun+1 − x∗. This should be
bounded above by un but this is only possible if un+1 ≤ 0, which in turn
implies un ≤ 0, a contradiction. Therefore, x∗ cannot be a mass point of
either players bid distribution. Hence un = δun+1 − x∗ < un+1.

Proof of Lemma 2. (Part 1) If the equalities hold, it is clear that it is an
equilibrium for neither player to bid. To see the converse, if at all the players
choose a pure action, it must be that both players bid zero, resulting in a
tie. Consequently, un = δun ⇒ un = 0 and similarly vn = 0. To eliminate
Left ’s incentive to bid even an infinitesimal more than zero, one must have
δun+1 ≤ un. From the first paragraph of Lemma 1, un+1 ≥ un ⇒ un+1 ≥ 0
and hence un+1 = 0. Likewise, one must have vn = vn−1 = 0.

(Part 2) The two players play a first price all pay auction in which Left ’s
value of a win, tie and a loss are αn, α′n and zero respectively. Likewise
βn, β′n and zero for Right . By Lemma 1, αn ≥ α′n ≥ 0 and βn ≥ β′n ≥ 0.
Part 1, Proposition 4 applies and the net payoffs are αn−min {αn, βn} and
βn −min {αn, βn} respectively.

34



Proof of Lemma 3. The proof repeatedly relies on Lemma 1 and Lemma 2.
Part 1. There are two cases to consider. Case 1 where a pure strategy
equilibrium is played at n. Case 2 is where a mixed strategy equilibrium is
played at n and n + 1. Case 3 where the equilibrium is in mixed strategies
at n but pure at n + 1 and Case 4 which is symmetric to Case 3.

Case 1. Here If the equilibrium at n is in pure strategies, then un =
vn = 0 (Part 1, Lemma 2).

Case 2. From (2) and (3), un = δun+1−δ (vn−1 − vn+1) and vn = δvn+1,
un+1 = δun and therefore un = δ2un + vn − δvn−1. On the other hand, if
a pure strategy equilibrium is being played at n − 1, then un = 0 which
implies vn−δvn−1 = 0, and by Lemma 1, vn−1 ≥ 0. Therefore, vn ≥ 0 = un.
Should the equilibrium at n−1 be in mixed strategies, then vn−1 ≥ δvn and
un = δ2un+vn−δvn−1 reduces to

(
1− δ2

)
(un − vn) ≤ 0 and again un ≤ vn.

Case 3. Now suppose that the equilibria at n and n + 1 are in mixed
and pure strategies respectively. Then un+1 = vn+1 = vn−1 = 0 which gives
un = δun+1 + vn − δvn−1 = −δvn−1. From Lemma 1, vn−1 ≥ vn = 0 and
hence un ≤ 0 = vn. A symmetric argument shows that vn+1 ≤ un+1.

Case 4. This is similar to the previous case.
Part 2. Suppose that βn+2 ≥ αn+2 and assume, by way of contradiction that
a mixed strategy equilibrium is played at n+1. Then, un+2 = δun+1 = δ2un

which means αn+1 = −δ
(
1− δ2

)
un. Since αn+1 ≥ 0 must hold, it follows

that un ≤ 0. On the other hand, vn+1 = δvn − αn+1 and since vn = δvn+1,
we have vn = −δ2un. If un < 0 then vn > 0 and contradicts Part 1 of the
Lemma. Therefore, un = 0. But then αn+1 = 0 and Left has no incentive
to bid. Consequently, vn+1 = δvn − αn+1 = δvn = δ2vn+1 which implies
vn+1 = 0, vn = 0, which is to say that player will have an incentive to exert
any effort at n + 1. The case when αn−1 ≥ βn−1 is similar.

Proof of Theorem 1. Consider an equilibrium that involves a draw. Let ` be
the smallest node at which a pure strategy equilibrium is played. Therefore,
u` = u`+1 = v` = v`−1 = 0. Since a mixed strategy equilibrium occurs at
` − 1, β`−1 = δ (v`−2 − v`) > 0, i.e. v`−2 > 0. By Lemma 1, vn > 0 for
all n ≤ ` − 2 and therefore βn > αn for all such n. Otherwise (3) cannot
hold. Therefore, un = δun−1 for all n ≤ ` − 2. Set L = ` − 2. Solving
recursively, gives (10), except vL. Arguing similarly for Right also gives us
(11), except uR. At L + 1 = ` − 1, if it were the case that β`−1 ≥ α`−1,
then u`−1 = δu`−2 < 0 contradicting that u`−1 = 0. Therefore, it must be
the case that α`−1 > β`−1 and consequently, u`−1 = δ (u` + v`)− δv`−2, i.e.
uL+1 = −δvL. Substitute for uL+1 in (10) to get vL = δΨL−1/

(
1− δ2

)
. To
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ensure 0 < v`−2 = vL, we require ΨL−1 > 0. Also, to ensure α`−1 > β`−1, we
must have u` + v` > u`−2 + v`−2, i.e. 0 > uL + vL = uL + δΨL−1/

(
1− δ2

)
=

ΨL/
(
1− δ2

)
. Therefore, ΨL < 0 is necessary. Therefore, L = L0.

Moreover, from the above we have concluded that `, the first node at
which a pure strategy equilibrium is played equals L0 + 2. Proceeding sim-
ilarly, we conclude that R = R0 and the last node at which a pure strategy
equilibrium occurs, say `′ satisfies `′ = R0 + 2 where `′ is the last node at
which a pure strategy equilibrium is played. Consequently, R− L ≥ 3.

To see the converse, we need to verify that (4) and (5) hold. We will
verify (4), the other is similar. First note that L = L0 < nL. From the
comments that surround the definition of nL, nR in the text, we note that
sn−1 > sn+1 all n ≤ L−2. It remains to verify them for n = L−1, L, L+1, i.e.
sL−2 > sL, sL−1 > sL+1 and sL ≤ sL+2. Each of these is immediate since,
with the specified payoffs, (and recalling that a pure strategy equilibrium
occurs at n = L + 2)

sL =
1

1− δ2
ΨL

sL+1 = − δ2

1− δ2
ΨL−1

sL+2 = 0

and sL−2 = ΨL−2, sL−1 = ΨL−1.

Proof of Theorem 2. We know that in a no-draw equilibrium, either R =
L + 3 or R = L + 1. As we already discussed when defining nL and nR, one
must have L−1 ≤ nL and R+1 ≥ nR. When R = L+1, the payoffs are given
by (10) and (11) and (14). It remains to check that sn−1 > sn+1 for n ≤ L
if and sn−1 ≥ sn+1 for n ≥ R hold to ensure that can indeed be supported
as equilibrium payoffs. For n ≤ L− 2 and n ≥ R + 2, these necessarily hold
by the definition of nL and nR. It remains to check them remaining four
inequalities: sL−2 > sL, sL−1 > sL+1, sL < sL+2 and sL+1 < sL+3. The
first two are

uL + vL < ΨL−2 (24)
sL+1 < ΨL−1 (25)

Substituting for vL we have the equivalent of (24):

ΨL−2 > uL +
δ

1− δ2
(ΨL−1 − δΦR+1)

=
ΨL − δ2ΦR+1

(1− δ2)
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which simplifies to(
1− δ2

)
ΨL−2 + δ2ΦL+2 −ΨL > 0 (26)

Substituting for sL+1 in (25) we obtain its equivalent

ΨL−1 >
δ

1− δ2
(ΦR+1 − δΨL−1) + vL+1

=
ΦR − δ2ΨL−1

(1− δ2)

which simplies to

ΨL−1 > ΦL+1 (27)

The analogous equivalent conditions corresponding to sL < sL+2 and sL+1 <
sL+3 are (

1− δ2
)
ΦL+3 + δ2ΨL−1 − ΦL+1 > 0 (28)

ΨL < ΦL+2 (29)

(26), (27), (28) and (29) along with L− 1 ≤ nL and R + 1 ≥ nR constitute
the necessary and sufficient conditions for a no-draw equilibrium in which
R = L + 1. However, on using (29),(

1− δ2
)
ΨL−2 + δ2ΦL+2 −ΨL >

(
1− δ2

)
(ΨL−2 −ΨL) > 0

Thus (29) ⇒(26) and similarly (27) ⇒(28). Consequently, the s necessary
and sufficient condition for the existence of a no-draw equilibrium with R =
L + 1 is that L < nL, R < nR and ΨL−1 > ΦL+1 and ΨL < ΦL+2. The
last two inequalities are satisfied only if L and L+1 lie on either side of the
intersection Ψn of Φn, i.e. n∗ ∈ [L,L + 1].

Implicit in the above arguments is the assumption that L > 1. The
above analysis must be verified for the case where L = 0 or L = N . It is a
routine computation to show that there is an equilibrium at L = 0 whenever
ΦN−2 −Ψ0 ≥ 0. Similarly L = N arises when ΨN−2 − Φ0 ≥ 0.

Proof of Proposition 3. It is convenient to introduce the following notation.

Pn =
n∏

i=1

pi

1− pi
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From the expression for (qn+1 − qn) in Section ??, we note that

qn+1 = qn +
pn

1− pn
(qn − qn+1)

= q1

n∑
k=0

Pk

and since qN = 1 we have

qn =
∑n

k=0 Pk∑N−1
k=0 Pk

(30)

Observe that for a bounded series zn = z (n/N),∑N−1
n=0 znPn∑N−1

n=0 Pn

→ z (λ∗) (31)

(31) arises because pn > 0.5 if, and only if, n/N < λ∗. Thus, as N gets large,
an increasing weight of the probability mass in the expectation embodied
in (31) is placed near n = λ∗N . Now q (λ) = limn→∞ qn is immediate by
applying the above to (30).

Proceeding similarly to qn, rewrite the difference equation for duration
to give

∆n+1 −∆n =
pn

1− pn
(∆n −∆n−1)−

1
1− pn

and solve recursively to get

∆n+1 −∆n = ∆1

n∏
j=1

pj

1− pj
−

n∑
j=1

 1
1− pj

n∏
k=j+1

pk

1− pk


= Pn

∆1 −
n∑

j=1

1
(1− pj) Pj


which reduces to

∆n =
n−1∑
m=1

Pm

∆1 −
m∑

j=1

1
(1− pj) Pj

 . (32)
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Moreover, substituting ∆N = 0 and solving for ∆1 gives,

∆1 =

∑N−1
k=1

(∑n
j=1

1
(1−pj)Pj

)
Pk∑N−1

k=1 Pk

Returning to (31), now observe that if zn = z (n/N) < 1−ε for some ε > 0,

n∑
m=0

 m∏
j=1

zk

→ 1
1− z0

(33)

(33) follows from noting that, as N gets large, all of the relevant terms in the
summation are very nearly powers of z 0. Formally, let za be the maximum
of z over [0, a], and zmax the maximum over [0,1]. Then

n∑
m=0

 m∏
j=1

zk

 =
aN∑

m=0

 m∏
j=1

zk

 +
λN∑

m=aN+1

 m∏
j=1

zk

 (34)

≤ 1− zaN+1
a

1− za
+

zaN+1
a

1− zmax
→ 1

1− za
(35)

Sending a → 0 completes the upper bound; the lower bound is analogous
(using minima). Applying this to to the expression for ∆1 above, we note
that

∆1 ≈
n∗∑
j=1

1
(1− pj) Pj

for N sufficiently large, where n∗ = λ∗N .
Thus, for n < n∗,

∆n ≈
n−1∑
m=0

 n∗∑
j=m+1

1
(1− pj) Pj

 Pm

=
n−1∑
m=0

 n∗∑
j=m+1

1
pj

j−1∏
k=1

1− pk

pk


≈

n−1∑
m=0

1
pm
× 1(

1− (1−pm)
pm

)
≈ N

∫ n/N

0

1
2p (x)− 1
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The above establishes limN→∞∆n/N when n < n∗. The case when n > n∗

is symmetric.

Remark 3 (Concerning Remark 2). The payoffs corresponding to the equi-
lbirium described in Remark 2 above are given in the following table.

n ≤ L− 2 L− 1 n = L, . . . , R R + 1 n ≥ R + 2
un un uL−1 0 uR+1 un

vn vn vL−1 0 vR+1 vn

where

vL−1 = δvL−2 −max
{
−uL−1,m

}
uR+1 = δuR+2 −max

{
−vR+1,m

}
.
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